The authors retrospectively analyse CT data obtained in examinations of 1745 patients divided into three groups. Of these, 832 were male and 913 female patients. Group 1 consisted of 721 patients with schizophrenia, group 2 (reference) consisted of 855 mentally normal subjects directed to computer tomographic examination with suspected organic involvement of the brain, and group 3 (control) consisted of 169 mentally and neurologically normal subjects. On the whole the incidence of various organic brain lesions was 8% in group 1, 41.5% in group 2, and 6.5% in control group, whatever the of the examinees or any other factors. Vascular diseases of the nervous system predominated in group 2 as against group 1, being 3.5 times more incident. No intracranial tumors were detected in controls; in schizophrenics computer tomographic signs of volumic brain lesions were detected in 1.5% of cases, being diagnosed more than 10 times more frequently than in group 2 patients.

Download full-text PDF

Source

Publication Analysis

Top Keywords

brain lesions
12
group
9
organic brain
8
normal subjects
8
computer tomographic
8
patients
5
[computerized tomography
4
tomography diagnosis
4
diagnosis organic
4
brain
4

Similar Publications

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

The guide extension-facilitated ostial stenting (GEST) technique uses a guide extension catheter (GEC) to improve stent delivery during primary coronary angioplasty (PCI). GECs are used for stent delivery into the coronary arteries of patients with difficult anatomy due to tortuosity, calcification, or chronic total occlusion (CTO) vessels. Stent and balloon placement has become challenging in patients with increasing lesion complexity due to tortuosity, vessel morphology, length of the lesion, and respiratory movements.

View Article and Find Full Text PDF

To myelinate axons, oligodendrocyte precursor cells (OPCs) must stop dividing and differentiate into premyelinating oligodendrocytes (preOLs). PreOLs are thought to survey and begin ensheathing nearby axons, and their maturation is often stalled at human demyelinating lesions. Lack of genetic tools to visualize and manipulate preOLs has left this critical differentiation stage woefully understudied.

View Article and Find Full Text PDF

Sodium MRI can measure sodium concentrations in people with multiple sclerosis, but the extent to which these alterations reflect metabolic dysfunction in the absence of tissue damage or neuroaxonal loss remains uncertain. Increases in total sodium concentration and extracellular sodium concentration are believed to be indicative of tissue disruption and extracellular space expansion. Conversely, increase in intracellular sodium concentration may represent early and transient responses to neuronal insult, preceding overt tissue damage.

View Article and Find Full Text PDF

Increasing evidence suggests the involvement of metabolic alterations in neurological disorders, including Alzheimer's disease (AD), and highlights the significance of the peripheral metabolome, influenced by genetic factors and modifiable environmental exposures, for brain health. In this study, we examined 1,387 metabolites in plasma samples from 1,082 dementia-free middle-aged participants of the population-based Rotterdam Study. We assessed the relation of metabolites with general cognition (G-factor) and magnetic resonance imaging (MRI) markers using linear regression and estimated the variance of these metabolites explained by genes, gut microbiome, lifestyle factors, common clinical comorbidities, and medication using gradient boosting decision tree analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!