The action of thapsigargin on intracellular calcium homeostasis and voltage-activated calcium currents was studied on freshly isolated adult mouse dorsal root ganglia neurons. The cytoplasmic Ca2+ concentration ([Ca2+]i) was measured using indo-1-based microfluorimetry; transmembrane Ca2+ currents were recorded under voltage-clamp in the whole-cell configuration of the patch-clamp technique. Extracellular applications of thapsigargin at concentrations of 20-2000 nM did not cause substantial changes of basal [Ca2+]i level in the majority of neurons studied. However, 5-10 min incubation of neurons with 20 nM thapsigargin completely and almost irreversibly inhibited caffeine-mediated Ca2+ release from intracellular pools. This inhibition was associated with deceleration of the recovery of depolarization-induced [Ca2+]i transients, presumably due to the inhibition of Ca2+ uptake by intracellular calcium stores. At concentrations between 200 and 2000 nM, thapsigargin markedly depressed the amplitudes of depolarization-triggered [Ca2+]i transients due to the inhibition of transmembrane Ca2+ entry through voltage-activated Ca2+ channels. We found that thapsigargin discriminates between low- and high-voltage-activated Ca2+ channels: 2000 nM of thapsigargin decreased the amplitudes of high-voltage-activated currents by 60%, while the amplitudes of low-voltage-activated Ca2+ currents were reduced by only 25%. Thus, thapsigargin exerts a dual action on [Ca2+]i handling mechanisms in mouse sensory neurons: at low concentrations (< 50 nM) it inhibits Ca2+ accumulation by endoplasmic reticulum pools, whereas at higher concentrations (200-2000 nM) thapsigargin blocks high-voltage-activated Ca2+ currents, reducing Ca2+ entry into the cell.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0306-4522(94)00553-hDOI Listing

Publication Analysis

Top Keywords

ca2+
13
ca2+ channels
12
ca2+ currents
12
thapsigargin
9
dual action
8
action thapsigargin
8
sensory neurons
8
inhibition ca2+
8
ca2+ uptake
8
intracellular calcium
8

Similar Publications

Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.

View Article and Find Full Text PDF

Formation of Nanowindow between Graphene Oxide and Carbon Nanohorn Assisted by Metal Ions.

Langmuir

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.

This study presents a novel nanostructured material formed by inserting oxidized carbon nanohorns (CNHox) between layered graphene oxide (GO) nanosheets using metal ions (M) from nitrate as intermediates. The resulting GO-CNHox-M structure effectively mitigated interlayer aggregation of the GO nanosheets. This insertion strategy promoted the formation of nanowindows on the surface of the GO sheets and larger mesopores between the GO nanosheets, improving material porosity.

View Article and Find Full Text PDF

Quiescent pancreatic stellate cells (PSCs) represent only a very low proportion of the pancreatic tissue, but their activation leads to stroma remodeling and fibrosis associated with pathologies such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). PSC activation can be induced by various stresses, including acidosis, growth factors (PDGF, TGFβ), hypoxia, high pressure, or intercellular communication with pancreatic cancer cells. Activated PSC targeting represents a promising therapeutic strategy, but little is known regarding the molecular mechanisms underlying the activation of PSCs.

View Article and Find Full Text PDF

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!