Texture analysis of technegas lung ventilation images.

Med Biol Eng Comput

Department of Medical Physics, Manchester Royal Infirmary, UK.

Published: January 1995

Technegas lung ventilation images sometimes have 'hot spots', particularly in patients with respiratory disease. A novel technique is presented for quantifying this 'spottiness' using morphological texture analysis. A set of 32 images from patients with various respiratory diseases is studied. Images are filtered at a range of scales using morphological opening, and the slopes of image metrics versus structuring element size are used as texture parameters. The results are compared with the opinions of three experienced nuclear medicine physicians who have classified the images into two groups, 'spotty' and 'non-spotty', and have ranked the former. For the spotty images, the computer and observer ranks are compared; the highest correlation is rs = 0.66 (p = 0.01) for a single parameter, and rs = 0.71 (p < 0.01) for a combination of two parameters. Using a pair of parameters, 83% and 90% correct classification rates are obtained for the spotty and non-spotty classes, respectively. It is concluded that these texture parameters provide a useful measure of image spottiness, and it is demonstrated that this technique is superior to previously published methods. The practical value of the technique is illustrated using two applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02522946DOI Listing

Publication Analysis

Top Keywords

texture analysis
8
technegas lung
8
lung ventilation
8
ventilation images
8
patients respiratory
8
texture parameters
8
images
6
texture
4
analysis technegas
4
images technegas
4

Similar Publications

Cutaneous leishmaniasis is a parasitic disease that poses significant diagnostic challenges due to the variability of results and reliance on operator expertise. This study addresses the development of a system based on machine learning algorithms to detect spp. parasite in direct smear microscopy images, contributing to the diagnosis of cutaneous leishmaniasis.

View Article and Find Full Text PDF

The human skin microbiome, a complex ecosystem of microbes, plays a pivotal role in skin health. This study aimed to investigate the impact of two skincare regimens, with preservatives (CSPs) and preservative-free (PFPs), on the skin microbiome in correlation to skin quality. double-blind randomized cosmetic studywith a split-face design was conducted on 26 female participants.

View Article and Find Full Text PDF

The impact of yeast strain selection on bread quality was evaluated using a range of commercial strains, typically employed in various alcoholic beverage productions, to determine their effectiveness in bread making. The final products made from these strains were compared to bread produced using the commercial baker's strain ACY298. Key parameters, including specific volume, hardness, pH, residual sugars, and organic acids, were thoroughly assessed.

View Article and Find Full Text PDF

The textural properties of synthetic and natural clays in the sodium form and exchanged with tetramethylammonium cations (TMA) were characterized using N and Ar physisorption isotherms at cryogenic temperatures. Specific surface areas and micro/mesoporous volumes were determined using the BET and the models. The analysis requires the use of reference isotherms measured at the same temperature on the surface of non-porous materials with an identical chemical composition.

View Article and Find Full Text PDF

The aim of this study was to investigate the effect of the addition of wild garlic leaves on the sensory quality, volatiles, color, and texture of sheep milk soft rennet-curd cheese. The sensory evaluation of color, appearance, texture, odor, and taste was performed using a 5-point scale. The intensity of selected taste and odor discriminants was also assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!