The beta-N-acetylglucosaminidase activity in the lepidopteran insect cell line Sf21 has been studied using pyridylaminated oligosaccharides and chromogenic synthetic glycosides as substrates. Ultracentrifugation experiments indicated that the insect cell beta-N-acetylglucosminidase exists in a soluble and a membrane-bound form. This latter form accounted for two-thirds of the total activity and was associated with vesicles of the same density as those containing GlcNAc-transferase I. Partial membrane association of the enzyme was observed with all substrates tested, i.e. 4-nitrophenyl beta-N-acetylglucosaminide, tri-N-acetylchitotriose, and an N-linked biantennary agalactooligosaccharide. Inhibition studies indicted a single enzyme to be responsible for the hydrolysis of all these substrates. With the biantennary substrate, the beta-N-acetylglucosaminidase exclusively removed beta-N-acetylglucosamine from the alpha 1,3-antenna. GlcNAcMan5GlcNAc2, the primary product of GlcNAc-transferase I, was not perceptibly hydrolyzed. beta-N-Acetylglucosaminidases with the same branch specificity were also found in the lepidopteran cell lines Bm-N and Mb-0503. In contrast, beta-N-acetylglucosaminidase activities from rat or frog (Xenopus laevis) liver and from mung bean seedlings were not membrane-bound, and they did not exhibit a strict branch specificity. An involvement of this unusual beta-N-acetylglucosaminidase in the processing of asparagine-linked oligosaccharides in insects is suggested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.29.17344 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!