We are using the tryptophan synthase alpha 2 beta 2 complex as a model system to investigate how ligands, protein-protein interaction, and mutations regulate enzyme activity, reaction specificity, and substrate specificity. The rate of conversion of L-serine and indole to L-tryptophan by the beta 2 subunit alone is quite low, but is activated by certain monovalent cations or by association with alpha subunit to form an alpha 2 beta 2 complex. Since monovalent cations and alpha subunit appear to stabilize an active conformation of the beta 2 subunit, we have investigated the effects of monovalent cations on the activities and spectroscopic properties of a mutant form of alpha 2 beta 2 complex having beta 2 subunit glutamic acid 109 replaced by alanine (E109A). The E109A alpha 2 beta 2 complex is inactive in reactions with L-serine but active in reactions with beta-chloro-L-alanine. Parallel experiments show effects of monovalent cations on the properties of wild type beta 2 subunit and alpha 2 beta 2 complex. We find that CsCl stimulates the activity of the E109A alpha 2 beta 2 complex and of wild type beta 2 subunit with L-serine and indole and alters the equilibrium distribution of L-serine reaction intermediates. The results indicate that CsCl partially repairs the deleterious effects of the E109A mutation on the activity of the alpha 2 beta 2 complex by stabilizing a conformation with catalytic properties more similar to those of the wild type alpha 2 beta 2 complex. This conclusion is consistent with observations that monovalent cations alter the catalytic and spectroscopic properties of several pyridoxal phosphate-dependent enzymes by stabilizing alternative conformations.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.29.17333DOI Listing

Publication Analysis

Top Keywords

alpha beta
36
beta complex
36
monovalent cations
24
beta subunit
20
beta
14
wild type
12
alpha
11
complex
9
tryptophan synthase
8
synthase alpha
8

Similar Publications

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.

View Article and Find Full Text PDF

Merging SOMO activation with transition metal catalysis: Deoxygenative functionalization of amides to β-aryl amines.

Sci Adv

January 2025

State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China).

Singly occupied molecular orbital (SOMO) activation of in situ generated enamines has achieved great success in (asymmetric) α-functionalization of carbonyl compounds. However, examples on the use of this activation mode in the transformations of other functional groups are rare, and the combination of SOMO activation with transition metal catalysis is still less explored. In the area of deoxygenative functionalization of amides, intermediates such as iminium ions and enamines were often generated in situ to result in the formation of α-functionalized amines.

View Article and Find Full Text PDF

Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions.

View Article and Find Full Text PDF

Background: Oral microbiome homeostasis is important for children's health, and microbial community is affected by anesthetics. The application of anesthetics in children's oral therapy has become a relatively mature method. This study aims to investigate the effect of different anesthesia techniques on children's oral microbiota.

View Article and Find Full Text PDF

Synthesis of Glycosylphosphatidylinositol Analogues with an Unnatural -D-Glucosamine-(1→6)--Inositol Motif.

J Carbohydr Chem

April 2024

Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.

Glycosylphosphatidylinositol (GPI) anchors contain a unique α-D-glucosamine-(1→6)--inositol [αGlcN(1,6)Ins] motif in their conserved core structure. To facilitate investigations of the functional roles of this structural motif, two GPI analogues containing unnatural βGlcN(1,6)Ins, instead of αGlcN(1,6)Ins, and an alkyne group at different positions of the GPI core were designed and synthesized. To this end, an orthogonally protected pseudopentasaccharide derivative of GPIs with the βGlcN(1,6)Ins motif was convergently constructed via [3+2] glycosylation and used as the common intermediate to prepare both GPI analogues by streamlined synthetic protocols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!