Background & Aims: Goblet cells secrete a combination of trefoil peptides and mucin glycoproteins to form a continuous gel on the mucosal surface. The functional effects of these products remain uncertain.
Methods: Trefoil peptides and/or mucin glycoproteins were added to Transwell monolayers of the human colonic cancer-derived T84 cell line. Intact monolayers permitted penetration of < 4% of the inert marker [3H]mannitol at 4 hours. Exposure to the toxic lectin phytohemagglutinin (1 mg/mL), oleic acid (8 mmol/L) and taurocholic acid (12 mmol/L), or Clostridium difficile toxin A (0.7 microgram/mL) resulted in loss of barrier function with 36%, 62%, and 45% of [3H]mannitol penetration, respectively.
Results: Addition of recombinant human intestinal trefoil factor in physiological concentrations (1-5 micrograms/microL) resulted in attenuation of the damage to monolayer integrity by up to 52%. Protection was enhanced (up to 95%) by the copresence of human colonic mucin glycoproteins. Similar effects were observed when rat intestinal trefoil factor or human spasmolysin, another human trefoil peptide, were added alone or in the presence of human mucin glycoproteins. Conversely, mucin glycoproteins isolated from the rat colon or stomach facilitated protection when added with human spasmolysin or human intestinal trefoil factor.
Conclusions: Trefoil peptides and mucin glycoproteins protect gastrointestinal mucosa from a variety of insults.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0016-5085(95)90340-2 | DOI Listing |
Int J Biol Sci
January 2025
Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China.
As the first T cell immunoglobulin mucin (Tim) family member to be identified, Tim-3 is a powerful immune checkpoint that functions in immunoregulation and induction of tolerance. Conventionally, Tim-3 is considered to play a role in adaptive immunity, especially in helper T cell-mediated immune responses. As researches progress, Tim-3 has been detected in a wider range of cell types, modulating cell function through ligand-receptor interactions and other pathways.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan.
Purpose: To reveal problems of magnetic resonance imaging (MRI) for diagnosing gastric-type mucin-positive (GMPLs) and gastric-type mucin-negative (GMNLs) cervical lesions.
Methods: We selected 172 patients suspected to have lobular endocervical glandular hyperplasia; their pelvic MR images were categorised into the training (n = 132) and validation (n = 40) groups. The images of the validation group were read twice by three pairs of six readers to reveal the accuracy, area under the curve (AUC), and intraclass correlation coefficient (ICC).
Sci Rep
January 2025
Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China.
This study aims to evaluate whether laparoscopic surgery enhances health-related quality of life (HRQoL) in endometriosis patients, utilizing the Endometriosis Health Profile-30 (EHP-30) questionnaire. The study also explores the correlations between disease severity, preoperative scores, and the subsequent changes following surgical intervention. This is a prospective observational study.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life Sciences, School of Natural Sciences (SONS), Shiv Nadar Institution of Eminence, Delhi NCR, India.
Inhibin, β, which is also known as INHBA, encodes a protein that belongs to the Transforming Growth factor-β (TGF-β) superfamily, which plays a pivotal role in cancer. Gastrointestinal tract (GI tract) cancer refers to the cancers that develop in the colon, liver, esophagus, stomach, rectum, pancreas, and bile ducts of the digestive system. The role of INHBA in all GI tract cancers remains understudied.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
Background: The transmembrane protein T-cell immunoglobulin and mucin-domain containing molecule 3 (TIM-3) is an immune checkpoint receptor that is expressed by a variety of leukocyte subsets, particularly in the tumor microenvironment. An effective TIM-3-targeting therapy should account for multiple biological factors, including the disease setting, the specific cell types involved and their varying sensitivities to the four putative TIM-3 ligands (galectin-9, phosphatidylserine, high mobility group protein B1 and carcinoembryonic antigen cell adhesion molecule 1), each of which engages a unique binding site on the receptor's variable immunoglobulin domain. The primary objectives of this study were to assess the prevalence and function of TIM-3 natural killer (NK) cells in patients with head and neck squamous cell carcinoma (HNSCC), determine whether the four TIM-3 ligands differentially affect TIM-3 NK cell functions, identify the most immunosuppressive ligand, and evaluate whether targeting ligand-mediated TIM-3 signaling enhances NK cell effector functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!