Most mammalian cell types appear to take up antisense oligonucleotides and oligonucleotide analogs from the bathing medium by highly inefficient endocytic mechanisms, and most if not all intracellular oligomer is sequestered in vesicles, still separated by a membrane from the target mRNA. On the other hand, oligonucleotides introduced directly into the cytoplasm by microinjection rapidly accumulate in the cell nucleus. Poor delivery to the designated site of action of antisense oligonucleotides is a major problem limiting their routine use in genetic research and their development as potential therapeutic agents. In view of this difficulty, various means of membrane permeabilization were applied to cultured human leukemia cells in an attempt to enhance intracytoplasmic delivery of fluorescein-tagged oligodeoxynucleotides. The outcome of the manipulations was monitored by flow cytometry and fluorescence microscopy. This work has directly confirmed the conclusion suggested by reported antisense effects, that streptolysin O reversibly permeabilizes the plasma membrane toward oligonucleotides and may be utilized to effect biochemical "microinjection" of these molecules directly into the cytoplasm. KY01 myelogenous leukemia cells treated in this way accumulated over 100-fold higher intracellular levels of oligodeoxynucleotides than in the absence of streptolysin O and, in contrast to the latter case, were observed to concentrate internalized molecules in their nuclei.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ard.1995.5.13 | DOI Listing |
Mol Med
January 2025
Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations, all leading to excessive proliferation of malignant blood cells in the bone marrow. Tumor heterogeneity due to the acquisition of new somatic alterations leads to a high rate of resistance to current therapies or reduces the efficacy of hematopoietic stem cell transplantation (HSCT), thus increasing the risk of relapse and mortality. Single-cell RNA sequencing (scRNA-seq) will enable the classification of AML and guide treatment approaches by profiling patients with different facets of the same disease, stratifying risk, and identifying new potential therapeutic targets at the time of diagnosis or after treatment.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
FMS-like tyrosine kinase-3 (FLT3), a class 3 receptor tyrosine kinase, can be activated by mutations of internal tandem duplication (FLT3-ITD) or point mutations in the tyrosine kinase domain (FLT3-TKD), leading to constitutive activation of downstream signaling cascades, including the JAK/STAT5, PI3K/AKT/mTOR and RAS/MAPK pathways, which promote the progression of leukemic cells. Despite the initial promise of FLT3 inhibitors, the discouraging outcomes in the treatment of FLT3-ITD-positive acute myeloid leukemia (AML) promote the pursuit of more potent and enduring therapeutic approaches. The histone acetyltransferase complex comprising the E1A binding protein P300 and its paralog CREB-binding protein (p300/CBP) is a promising therapeutic target, but the development of effective p300/CBP inhibitors faces challenges due to inherent resistance and low efficacy, often exacerbated by the absence of reliable clinical biomarkers for patient stratification.
View Article and Find Full Text PDFLeukemia
January 2025
Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
Multiple myeloma (MM) remains an incurable hematological malignancy that necessitates the identification of novel therapeutic strategies. Here, we report that intracellular levels of very long chain fatty acids (VLCFAs) control the cytotoxicity of MM chemotherapeutic agents. Inhibition of VLCFA biosynthesis reduced cell death in MM cells caused by the proteasome inhibitor, bortezomib.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Department of Ophthalmology, Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili, China. Electronic address:
Aims: Diabetic retinopathy (DR) represents one of the most devastating sequences in patients with diabetes. Endothelial dysfunction is a key pathological feature and contributing factor to DR. In the present study we investigated the role of megakaryocytic leukemia 1 (MKL1) in DR pathogenesis.
View Article and Find Full Text PDFPLoS One
January 2025
School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
The incidence of acute myeloid leukemia (AML) is increasing annually, and timely diagnostic and treatments can substantially improve patient survival rates. AML typing traditionally relies on manual microscopy for classifying and counting myeloid cells, which is time-consuming, laborious, and subjective. Therefore, developing a reliable automated model for myeloid cell classification is imperative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!