The sensitivity to some non-radiation agents in mice which displayed an increased radioresistance 12 days following sublethal radiation was investigated. The animals demonstrated no enhanced cross-resistance to acute hypoxia, injections of KCN, strychnine, sarcolysine, hexenal. Resistance to typhoid fever endotoxin as well as the indices of nonspecific antimicrobial host defense (NBT-test, segregative activity of RES, white blood cell counts, antibody production ability) were reduced as compared with those of intact mice. The serum corticosterone level was normal.

Download full-text PDF

Source

Publication Analysis

Top Keywords

increased radioresistance
8
[sensitivity non-radiation
4
non-radiation effects
4
effects animals
4
animals examined
4
examined phase
4
phase increased
4
radioresistance developed
4
developed sublethal
4
sublethal irradiation]
4

Similar Publications

Osmotic stress influences microtubule drug response via WNK1 kinase signaling.

Drug Resist Updat

January 2025

Cell Cycle & Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain; Translational Cancer Research Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; UCLM Biomedicine Unit Associated to CSIC, Spain; CSIC Conexión-Cáncer Hub, Spain. Electronic address:

Ion homeostasis is critical for numerous cellular processes, and disturbances in ionic balance underlie diverse pathological conditions, including cancer progression. Targeting ion homeostasis is even considered as a strategy to treat cancer. However, very little is known about how ion homeostasis may influence anticancer drug response.

View Article and Find Full Text PDF

PI3K/AKT/mTOR Targeting in Colorectal Cancer Radiotherapy: A Systematic Review.

J Gastrointest Cancer

January 2025

Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.

Background: Radioresistance is a major challenge in the treatment of patients with colorectal cancer (CRC) and impairs the efficacy of radiotherapy. The PI3K/AKT/mTOR signaling pathway plays a critical role in CRC and contributes to the development of radioresistance. Accordingly, targeting this signaling pathway may be a promising strategy to improve oncotherapy.

View Article and Find Full Text PDF

Radiotherapy stands as a cornerstone in cancer therapy, with nuclear DNA acknowledged as the principal target molecule for radiation-induced cellular demise or injury. Nonetheless, an expanding body of contemporary research elucidates the significant contri-bution of sphingolipids to radiation-induced cell death, particularly in modulating radiation-induced apoptosis. Radiation can instigate apoptosis through multiple pathways of sphin-golipid metabolism, encompassing the activation of ceramide synthase, acid sphingomyelin-ase, neutral sphingomyelinase, sphingosine-1-phosphate lyase, and sphingosine-1-phosphate phosphatase, and the inhibition of sphingosine kinase-1.

View Article and Find Full Text PDF

Colorectal carcinoma (CRC) progression is associated with an increase in PROX1+ tumor cells, which exhibit features of CRC stem cells and contribute to metastasis. Here, we aimed to provide a better understanding to the function of PROX1+ cells in CRC, investigating their progeny and their role in therapy resistance. PROX1+ cells in intestinal adenomas of ApcMin/+ mice expressed intestinal epithelial and CRC stem cell markers, and cells with high PROX1 expression could both self-renew tumor stem/progenitor cells and contribute to differentiated tumor cells.

View Article and Find Full Text PDF

Mutations in the KRAS oncogene can mediate resistance to radiation. KRAS mutation (mut) driven tumors have been reported to express cancer stem cell (CSC)-like features and may harbor metabolic liabilities through which CSC-associated radioresistance can be overcome. We established a radiation/drug screening approach that relies on the growth of 3D spheres under anchorage-independent and lipid-limiting culture conditions, which promote stemness and lipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!