The enzyme activities responsible for carboxylation reactions in cell extracts of the gastric pathogen Helicobacter pylori have been studied by H14CO3- fixation and spectrophotometric assays. Acetyl coenzyme A carboxylase (EC 6.4.1.2) and malic enzyme (EC 1.1.1.40) activities were detected, whereas pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxylase (EC 4.1.3.1) and phosphoenolpyruvate carboxykinase (EC 4.1.1.49) activities were absent. However, a pyruvate-dependent, ATP-independent, and avidin-insensitive H14CO3- fixation activity, which was shown to be due to the isotope exchange reaction of pyruvate:flavodoxin oxidoreductase (EC 1.2.7.1), was present. The purified enzyme is composed of four subunits of 47, 36, 24, and 14 kDa. N-terminal sequence analysis showed that this enzyme is related to a recently recognized group of four-subunit pyruvate:ferredoxin oxidoreductases previously known only from hyperthermophiles. This enzyme from H. pylori was found to mediate the reduction of a number of artificial electron acceptors in addition to a flavodoxin isolated from H. pylori extracts, which is likely to be the in vivo electron acceptor. Indirect evidence that the enzyme is capable of in vitro reduction of the anti-H. pylori drug metronidazole was also obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC177123PMC
http://dx.doi.org/10.1128/jb.177.14.3953-3959.1995DOI Listing

Publication Analysis

Top Keywords

pyruvateflavodoxin oxidoreductase
8
helicobacter pylori
8
h14co3- fixation
8
enzyme
6
pylori
5
identification carboxylation
4
carboxylation enzymes
4
enzymes characterization
4
characterization novel
4
novel four-subunit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!