The 16S rDNA of 17 strains of Azospirillum, 14 assigned to one of the known species A. amazonense, A. brasilense, A. halopraeferens, A. irakense and A. lipoferum, and the other three of uncertain taxonomic position, was sequenced after polymerase chain reaction amplification and analysed in order to investigate the phylogenetic relationships at the intra-generic and super-generic level. The phylogenetic analysis confirms that the genus Azospirillum constitutes a phylogenetically separate entity within the alpha subclass of Proteobacteria and that the five species are well defined. A. brasilense and A. lipoferum are closely related species and form one cluster together with A. halopraeferens; the pair of species A. amazonense and A. irakense forms a second cluster in which Rhodospirillum centenum is also placed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.1995.tb07579.xDOI Listing

Publication Analysis

Top Keywords

genus azospirillum
8
16s rdna
8
species amazonense
8
phylogeny genus
4
azospirillum based
4
based 16s
4
rdna sequence
4
sequence 16s
4
rdna strains
4
strains azospirillum
4

Similar Publications

Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.

View Article and Find Full Text PDF

L. is an aromatic spice, utilized as an original and peculiar flavoring ingredient in a variety of culinary applications and pharmaceuticals. Black seed ( L.

View Article and Find Full Text PDF

A whole genome sequence of a new strain of the nitrogen-fixing bacterium known for its diverse plant growth-promoting bacteria (PGPB), was obtained for the first time. The strain, designated e AT, was isolated during a soil analysis in the Chernevaya taiga of Western Siberia, a unique and fertile forest ecosystem known for its diverse plant growth-promoting bacteria (PGPB). The genome under study is fully assembled into seven circular molecules, none of which are unequivocally plasmids, with a total length of 6.

View Article and Find Full Text PDF

The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.

View Article and Find Full Text PDF

Micro-polluted surface waters (MPSWs) draw increased concern for environmental protection. However, traditional treatment methods such as activated sludge, ozone activated carbon, and membrane filtration suffer from high cost and susceptibility to secondary pollution and are rarely used to address MPSWs. Herein, a new stepped combined constructed wetland planted with without additional inputs was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!