Degradation of endothelial cell matrix collagen is correlated with induction of stromelysin by an activated ras oncogene.

Clin Exp Metastasis

Department of Oncology, Hoffman-La Roche Inc., Nutley, NJ 07110, USA.

Published: July 1995

A conditional expression system was established whereby the human K-ras, v-src, and v-mos genes were cloned into a conditional expression vector downstream of the dexamethasone-inducible mouse mammary tumor virus long terminal repeat. Rat-1 fibroblasts were transfected with these constructs and selected in medium containing G418. Cloned transfectants were isolated and characterized for absolute dependence on dexamethasone for expression of oncogene products and anchorage-independent growth in soft agar. Expression of activated p21K-ras(val12) enabled the fibroblasts to degrade extracellular matrix collagen secreted by murine microvessel endothelial cells. Concurrent with p21K-ras(val12) induction a proteinase with the characteristic size and substrate specificity of transin, the murine homologue of the human matrix metalloproteinase stromelysin, was expressed and secreted. Induction of v-mos and v-src oncogenes resulted in little or no detectable transin expression respectively coinciding with a relative or absolute failure to increase degradation of extracellular matrix collagen. This study suggests that in this system the expression of the ras oncogene can contribute to the in vitro invasive behavior of tumor cells by upregulating the production of a metalloproteinase capable of degrading collagen synthesized by vascular endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00133479DOI Listing

Publication Analysis

Top Keywords

matrix collagen
12
ras oncogene
8
conditional expression
8
extracellular matrix
8
endothelial cells
8
expression
6
degradation endothelial
4
endothelial cell
4
matrix
4
cell matrix
4

Similar Publications

A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms.

Proc Natl Acad Sci U S A

January 2025

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.

View Article and Find Full Text PDF

Tendon injuries and disorders associated with mechanical tendon overuse are common musculoskeletal problems. Even though tendons play a central role in human movement, the intrinsic healing process of tendon is very slow. So far, it is known that tendon cell activity is supported by several interstitial cells within the tendon.

View Article and Find Full Text PDF

Corneal substitutes with structural and compositional characteristics resembling those of natural corneas have attracted considerable attention. However, biomimicking the complex hierarchical organization of corneal stroma is challenging. In this study, humanized corneal stroma-like adhesive patches (HCSPs) are prepared through a multi-step process.

View Article and Find Full Text PDF

Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1, leading to loss or dysfunction of type-VII collagen (C7), a protein essential for skin stability. Clinically, patients suffer from severe skin blistering, chronic or recurrent wounds, and scarring, which predispose to early onset of aggressive squamous cell carcinoma. Previous studies showed that RDEB-keratinocytes (RDEB-KC) express high levels of matrix-metalloproteinase 9 (MMP-9), a molecule known to play a crucial role in wound chronification if dysregulated.

View Article and Find Full Text PDF

Circulating and Magnetic Resonance Imaging Biomarkers of Intestinal Fibrosis in Small Bowel Crohn's Disease.

Inflamm Bowel Dis

January 2025

Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

Background: We previously identified circulating and MRI biomarkers associated with the surgical management of Crohn's disease (CD). Here we tested associations between these biomarkers and ileal resection inflammation and collagen content.

Methods: Fifty CD patients undergoing ileal resection were prospectively enrolled at 4 centers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!