Some mathematical calculations were done that provided information about the structure and biochemistry of polyhydroxyalkanoic acid (PHA) granules and about the amounts of the different constituents that contribute to the PHA granules. The data obtained from these calculations are compared with data from the literature, which show that PHA granules consist not only of the polyester but also of phospholipids and proteins. The latter are referred to as granule-associated proteins, and they are always located at the surface of the PHA granules. A concept is proposed that distinguishes four classes of structurally and functionally different granule-associated proteins: (i) class I comprises the PHA synthases, which catalyze the formation of ester linkages between the constituents; (ii) class II comprises the PHA depolymerases, which are responsible for the intracellular degradation of PHA, (iii) class III comprises a new type of protein, which is referred to as phasins and which has most probably a function analogous to that of oleosins in oilseed plants, and (iv) class IV comprises all other proteins, which have been found to be associated with the granules but do not belong to classes I-III. Particular emphasis is placed on the phasins, which constitute a significant fraction of the total cellular protein. Phasins are assumed to form a close protein layer at the surface of the granules, providing the interface between the hydrophilic cytoplasm and the much more hydrophobic core of the PHA inclusion.

Download full-text PDF

Source
http://dx.doi.org/10.1139/m95-175DOI Listing

Publication Analysis

Top Keywords

pha granules
16
class comprises
12
structure biochemistry
8
polyhydroxyalkanoic acid
8
pha
8
granule-associated proteins
8
comprises pha
8
granules
6
considerations structure
4
biochemistry bacterial
4

Similar Publications

Demonstrating performance in scaled-up production and quality control of polyhydroxyalkanoates using municipal waste activated sludge.

Water Res

January 2025

Department of Biotechnology, Delft University of Technology, Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands; School of Chemical Engineering, University of Queensland, St. Lucia, Australia. Electronic address:

Significant progress has been made over the past decade with pilot scale polyhydroxyalkanoate (PHA) production by direct accumulation using municipal waste activated sludge (WAS). However, industrial upscaling experiences are still lacking in the research literature. In this study, a demonstration scale (4 m) PHA production process was operated using industrially relevant equipment and compared favourably to those from parallel pilot scale (200 L) production runs.

View Article and Find Full Text PDF

Polyhydroxybutyrate (PHB) is a biodegradable natural polymer produced by different prokaryotes as a valuable carbon and energy storage compound. Its biosynthesis pathway requires the sole expression of the operon, although auxiliary genes play a role in controlling polymer accumulation, degradation, granule formation and stabilization. Due to its biodegradability, PHB is currently regarded as a promising alternative to synthetic plastics for industrial/biotechnological applications.

View Article and Find Full Text PDF

As natural and biodegradable biopolymers, Polyhydroxyalkanoates (PHA) were synthetized by aerobic granules sludge (AGS) in a sequential batch reactor in this study. The effect of different COD concentrations on PHA accumulation and nutrients removal were investigated. At the same time, different pretreatment methods for PHA extraction, including NaClO pretreatment for extracellular polymeric substances (EPS) removal, NaCO pretreatment for EPS recovery, and grinding pretreatment to reduce particle size and augment the surface area available for interaction with the extraction solvent, were compared.

View Article and Find Full Text PDF

Uncovering novel polyhydroxyalkanoate biosynthesis genes and unique pathway in yeast hanseniaspora valbyensis for sustainable bioplastic production.

Sci Rep

November 2024

Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, Egypt.

This study delves into the exploration of polyhydroxyalkanoate (PHA) biosynthesis genes within wild-type yeast strains, spotlighting the exceptional capabilities of isolate DMG-2. Through meticulous screening, DMG-2 emerged as a standout candidate, showcasing vivid red fluorescence indicative of prolific intracellular PHA granules. Characterization via FTIR spectroscopy unveiled a diverse biopolymer composition within DMG-2, featuring distinct functional groups associated with PHA and polyphosphate.

View Article and Find Full Text PDF

Production of Poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) by Using Candy Industry Waste as Raw Materials.

Bioengineering (Basel)

August 2024

Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain.

The haloarchaeon synthesizes poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) under unfavorable nutritional conditions without the addition of any precursor to the culture, which is an advantage compared to other microbial counterparts able to synthesize polyhydroxyalkanoates (PHA). PHBV is a biodegradable polymer showing physiochemical properties of biotechnological and biomedical interest and can be used as an alternative to plastics made from chemical synthesis (which are not environmentally friendly). The versatile metabolism of makes the use of waste as a carbon source for cellular growth and PHA synthesis possible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!