The volatile sulphur compound methyl mercaptan (CH3SH) is a by-product of protein metabolism and a principal component of oral malodour. This investigation examines the effect of CH3SH on the enzymatic activities of cathepsins B and G and elastase, and on the production by human gingival fibroblasts of two key factors, prostaglandin E (PGE) and cAMP, of the PGE2-cAMP-dependent pathway, which may contribute to the increased production of collagenase and tissue destruction in human periodontal disease. The results demonstrate that CH3SH alone, or in combination with interleukin-1 (IL-1) or lipopolysaccharide, can significantly enhance the secretion of PGE2, cAMP and procollagenase by human gingival fibroblasts. CH3SH also stimulated mononuclear cells to produce IL-1, which can increase cAMP production, and act in synergism with the direct effect of CH3SH on cAMP. CH3SH also significantly enhanced the activity of cathepsin B, moderately suppressed that of cathepsin G, but did not significantly affect elastase. These results provide evidence that CH3SH could be a contributing factor in the enzymatic and immunological cascade of events leading to tissue degradation in periodontal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9969(94)00165-8DOI Listing

Publication Analysis

Top Keywords

human gingival
12
methyl mercaptan
8
gingival fibroblasts
8
ch3sh
7
stimulation enzyme
4
enzyme cytokine
4
production
4
cytokine production
4
production methyl
4
human
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

Background: Oral and gut microbiomes have been associated with Alzheimer's disease and related dementias (ADRD). Although the role of the gut microbiome and gut dysbiosis in ADRD has been extensively studied, research on the oral microbiome is lacking. Moreover, the synergetic contribution of oral and gut microbiomes to ADRD is unexplored.

View Article and Find Full Text PDF

Objective:  Particulate matter 2.5 (PM2.5), an important air pollution particle, has been previously studied for its effects on various normal and cancer tissues.

View Article and Find Full Text PDF

Aim: The aim of this study was to investigate and compare the antimicrobial effects of an 810-nanometer diode laser, utilizing or not utilizing toluidine blue as a photosensitizer, in the management of peri-implant mucositis.

Settings And Design: The present study was carried out in 30 implant sites in 15 patients with peri-implant mucositis with a specific inclusion and exclusion criteria. 15 sites were treated utilizing a diode laser (control group) and 15 with photodynamic therapy (test group) in a split-mouth format.

View Article and Find Full Text PDF

Aim: To compare microleakage beneath ceramic and metal brackets prepared with either acid etching or laser conditioning.

Design: An in vitro study.

Setting: Department of Orthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.

View Article and Find Full Text PDF

A monoamine oxidase B inhibitor altered gene expression of catalytically active dual-specificity phosphatases in human oral gingival keratinocytes.

Eur Rev Med Pharmacol Sci

December 2024

Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada.

Objective: Monoamine oxidase (MAO) inhibitors reduce inflammation in a number of in vitro and in vivo models. This finding led to the development of a novel MAO-B selective inhibitor (RG0216) designed to reduce blood-brain barrier penetration. To elucidate RG0216's regulatory role in inflammation-relevant signaling pathways, we employed a transcriptome analytic approach to identify genes that are differentially regulated by RG0216 and then globally identified which inflammation-relevant biological signaling pathways were altered by this drug.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!