Reproductive hormones and menstrual changes with exercise in female athletes.

Sports Med

Department of Obstetrics and Gynecology, Women and Infants' Hospital, Brown University, Providence, Rhode Island, USA.

Published: April 1995

The endocrine equilibrium which regulates reproductive function in women can be affected by physical and psychological factors. Blood levels of hormones depend on a balance between production, metabolism and clearance rates. Intensive physical exercise may affect this balance via different mechanisms, such as stress associated with competition, dieting, reduction of body fat and body weight, production of heat or hypoxia. Women who engage in regular high intensity exercise may be at risk, as a consequence of these hormonal changes, of developing menstrual disturbances such as oligomenorrhoea, delayed menarche and amenorrhoea. Impaired production of gonadotrophins, which leads to luteal phase deficiency and anovulation, is a common hormonal finding with exercise-induced menstrual disturbances, but several other hormones may show significant alterations. In this article we have reviewed the recent literature on the effects of intensive physical exercise on the menstrual cycle, on some important physical parameters such as bone mineral density and bodyweight, and on those hormones (gonadotrophins, prolactin, melatonin, opioid peptides and steroids) which regulate, directly or indirectly, the reproductive function in women.

Download full-text PDF

Source
http://dx.doi.org/10.2165/00007256-199519040-00005DOI Listing

Publication Analysis

Top Keywords

reproductive function
8
function women
8
intensive physical
8
physical exercise
8
menstrual disturbances
8
reproductive hormones
4
menstrual
4
hormones menstrual
4
menstrual changes
4
exercise
4

Similar Publications

Adult neurogenesis has most often been studied in the hippocampus and subventricular zone-olfactory bulb, where newborn neurons contribute to a variety of behaviors. A handful of studies have also investigated adult neurogenesis in other brain regions, but relatively little is known about the properties of neurons added to non-canonical areas. One such region is the striatum.

View Article and Find Full Text PDF

Lineage tracing studies suggest that the placenta is not a de novo source of hematopoietic stem cells.

PLoS Biol

January 2025

Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Definitive hematopoietic stem and progenitor cells (HSPCs) arise from a small number of hemogenic endothelial cells (HECs) within the developing embryo. Understanding the origin and ontogeny of HSPCs is of considerable interest and potential therapeutic value. It has been proposed that the murine placenta contains HECs that differentiate into HSPCs.

View Article and Find Full Text PDF

Background: The association between bacterial vaginosis (BV) and increased HIV acquisition risk may be related to concentrations of HIV-susceptible immune cells in the cervix.

Methods: Participants (31 with BV and 30 with normal microbiota) underwent cervical biopsy at a single visit. Immune cells were quantified and sorted using flow cytometry (N=55), localization assessed by immunofluorescence (N=16), and function determined by bulk RNA sequencing (RNA-seq) of live CD45+ cells (N=21).

View Article and Find Full Text PDF

Classical tissue recombination experiments demonstrate that cell-fate determination along the anterior-posterior axis of the Müllerian duct occurs prior to postnatal day 7 in mice. However, little is known about how these cell types are maintained in adults. In this study, we provide genetic evidence that a balance between antagonistic retinoic acid (RA) and estrogen signaling activity is required to maintain simple columnar cell fate in adult uterine epithelium.

View Article and Find Full Text PDF

Growth decline in European beech associated with temperature-driven increase in reproductive allocation.

Proc Natl Acad Sci U S A

February 2025

Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland.

Climate change is impacting forests in complex ways, with indirect effects arising from interactions between tree growth and reproduction often overlooked. Our 43-y study of European beech () showed that rising summer temperatures since 2005 have led to more frequent seed production events. This shift increases reproductive effort but depletes the trees' stored resources due to insufficient recovery periods between seed crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!