In earlier studies we have shown that either a single exposure or multiple exposures to a low dose of X-rays (0.05 Gy) induced a significant cytogenetic adaptive response in mouse germ cells. In this paper, a very low-dose rate (20 microGy/min) of chronic 60Co gamma-irradiation was used to pre-irradiate mice for 40 days. Then, another 40 days later, these mice were treated with a subsequent large dose of X-irradiation, followed 24 h later by cytogenetic analysis of their spermatocytes. Analysis for radiation-induced DNA and chromosomal damage was also carried out in splenocytes, bone marrow cells and spermatocytes of the offspring of mice adapted by the low-dose rate of chronic gamma-irradiation. Results demonstrated that (i) cumulative gamma-irradiation (1.10 Gy) at the dose rate 20 microGy/min induced a marked cytogenetic adaptive response in the mouse germ cells (stem spermatogonia); (ii) the sensitivity of offspring's bone marrow cells and spermatocytes to 1.5 Gy X-ray-induced chromosome aberrations was not influenced by the low-dose radiation delivered to paternal germ cells; (iii) either constitutive or post-irradiation DNA repair capacity (UV-induced unscheduled DNA synthesis, UDS) was not modified in the offspring's splenocytes; (iv) the sensitivity of the offspring's splenocytes to radiation-induced cell killing was also not altered. These results suggest that low-dose radiation delivered to the male parents with a significant induction of cytogenetic adaptive response in their germ cell does not likely cause any risk of damaging effects to the offspring of those irradiated male mice.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mutage/10.2.95DOI Listing

Publication Analysis

Top Keywords

cytogenetic adaptive
16
adaptive response
16
germ cells
16
low-dose rate
12
induction cytogenetic
8
response germ
8
rate chronic
8
chronic gamma-irradiation
8
radiation-induced dna
8
dna chromosomal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!