Purpose: Allogeneic bone marrow transplantation (BMT) has been shown to provide effective therapy for chronic myelogenous leukemia (CML), but previous reports have also demonstrated the persistence of bcr-abl-positive cells for months to years after BMT in the majority of patients. To evaluate the biologic significance of persistent bcr-abl-positive cells, we examined the relationship between clinical parameters known to affect the risk of relapse and the ability to detect bcr-abl-positive cells post-BMT.

Patients And Methods: We analyzed 480 samples from 92 patients at two transplant centers for the presence of bcr-abl-positive cells by polymerase chain reaction (PCR). Two different BMT preparative regimens and protocols for prevention of graft-versus-host disease (GVHD) were used. One center used cyclophosphamide plus total-body irradiation (CY/TBI) and T-cell-depleted marrow; the second center used busulfan plus cyclophosphamide (Bu/CY) and untreated marrow with cyclosporine and methotrexate (Csp/MTX) as GVHD prophylaxis.

Results: We first determined the percent of patients at each center with > or = one PCR-positive (PCR+) result at defined intervals post-BMT. Between 0 and 6 months post-BMT, the majority of patients (80% to 83%) in both populations had PCR-detectable bcr-abl-positive cells. Between 6 and 24 months post-BMT, 80% to 88% of patients who received T-cell-depleted marrow remained PCR+, as compared with 26% to 30% of patients who received unmodified marrow. After 24 months post-BMT, the percentage of PCR+ patients was not significantly different in the two populations. This pattern of detection of bcr-abl-positive cells post-BMT followed the development of chronic GVHD in patients who received unmodified marrow. All patients were also divided into three groups based on post-BMT PCR results as follows: (1) persistent PCR+ (n = 29), (2) intermittent PCR-negative ([PCR-] n = 40), and (3) persistent PCR- (n = 23). These three groups were found to have a low, intermediate, and high probability of maintaining remission and disease-free survival, respectively (P = .0001). Intermittent or persistent PCR- results, which reflect levels of minimal residual disease < or = the limit of detection by PCR, were clearly associated with both acute (P = .004) and chronic (P = .000005) GVHD. Nevertheless, 44% of patients without GVHD also had intermittent or persistent PCR- assays.

Conclusion: The persistence of PCR-detectable bcr-abl-positive cells early post-BMT in more than 80% of patients suggests that neither BMT preparative regimen effectively eradicates CML cells in most patients. Subsequently, acute and/or chronic GVHD are associated with a decreased ability to detect residual bcr-abl-positive cells, which suggests that immunologic mechanisms mediated by donor cells are important for inducing long-term remissions after BMT. The demonstration that 44% of patients without GVHD had either low or undetectable levels of residual leukemia suggests the presence of mechanisms capable of suppression or eradication of CML independent of GVHD.

Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.1995.13.7.1704DOI Listing

Publication Analysis

Top Keywords

bcr-abl-positive cells
32
patients
13
months post-bmt
12
patients received
12
persistent pcr-
12
cells
10
minimal residual
8
residual disease
8
graft-versus-host disease
8
allogeneic bone
8

Similar Publications

The present study was aimed at revealing the metabolic changes that occurred in the cellular lipid pattern of acute and chronic myeloid leukaemia cells following treatment with cannabidiol (CBD). CBD is a non-psychoactive compound present in Cannabis sativa L., which has shown an antiproliferative action in these type of cancer cells.

View Article and Find Full Text PDF

Background: The challenges associated with traditional drug screening, such as high costs and long screening times, have led to an increase in the use of single-cell isolation technologies. Small sample volumes are required for high-throughput, cell-based assays to reduce assay costs and enable rapid sample processing. Using microfluidic chips, single-cell analysis can be conducted more effectively, requiring fewer reagents and maintaining biocompatibility.

View Article and Find Full Text PDF

Background: Platelets are correlated with myeloid leukemia (ML), but to date, there have been no studies confirming the causal relationship between them.

Methods: Platelet count (PLT), mean platelet volume (MPV), plateletcrit (PCT), and platelet distribution width (PDW) data were obtained from the GWAS catalog database as exposure factors. Acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) data were obtained from the FinnGen database as outcome indicators.

View Article and Find Full Text PDF

The most frequent type of leukemia in Africa is chronic myeloid leukemia (CML). The genetic background of the rarer Philadelphia chromosome (Ph) Ph-ve (BCR-ABL-ve) subform of CML is largely unknown in African patients. Therefore, in this study, we aimed to investigate the role of CYP1A1 and 2D6 SNPs in the pathogenesis of Ph-ve CML in the Sudanese population.

View Article and Find Full Text PDF

Immune-related genes for the prediction of response to imatinib therapy in chronic myeloid leukemia.

Carcinogenesis

January 2025

Division of Hematology, Second Xiangya Hospital, Central South University, No. 139th Renmin Middle Road, Changsha, Hunan 410011, People's Republic of China.

Chronic myeloid leukemia (CML) is a malignant hyperplastic tumor that originates from pluripotent hematopoietic stem cells in the bone marrow. The introduction of tyrosine kinase inhibitors has significantly improved the survival rates of CML patients. This study aimed to identify immune-related genes associated with the response to imatinib (IM) therapy in CML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!