A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2,3-Dihydroxybenzoic acid decarboxylase from Aspergillus niger. A novel decarboxylase. | LitMetric

2,3-Dihydroxybenzoic acid decarboxylase, the last enzyme in the fungal metabolism of indole to catechol, catalyzes the non-oxidative decarboxylation of 2,3-dihydroxybenzoic acid to catechol. Unlike most other decarboxylases, this enzyme does not require a cofactor, underlining the importance of active-site residues in the reaction mechanism. Earlier studies from this laboratory [Kamath, A. V., Appaji Rao, N. & Vaidyanathan, C. S. (1989) Biochem. Biophys. Res. Commun. 165, 20-26], have shown that the sulfhydryl agent N-ethylmaleimide (MalNEt) inactivated the enzyme by modifying a single class of cysteine residues and that this inactivation was prevented in the presence of salicylate, a substrate analogue. In the present study, this essential cysteine residue has been identified by specific labelling with [14C]-MalNEt using the differential labelling technique. The stoichiometry of incorporation of [14C]MalNEt was approximately one/subunit of the homotetrameric protein. The peptide bearing this reactive cysteine residue was isolated by tryptic digestion of the differentially labelled enzyme and subsequent reverse-phase chromatography of the peptide mixture. The sequence of the major radioactive peptide that was identified to be the active-site peptide, was LLGLAETCK. A search for sequences similar to this active-site peptide indicated that this sequence was probably unique to the decarboxylase under study. A partial primary structure map constructed from the sequences of peptides derived from enzymic cleavage of the protein using endoproteinase Glu-C and trypsin did not share any significant sequence similarity with sequences reported in the database, again suggesting the uniqueness of the enzyme. This is the first report on the active-site peptide and the partial primary structure of a non-oxidative decarboxylase catalyzing the removal of a carboxyl group from an aromatic nucleus.

Download full-text PDF

Source

Publication Analysis

Top Keywords

23-dihydroxybenzoic acid
12
active-site peptide
12
acid decarboxylase
8
cysteine residue
8
partial primary
8
primary structure
8
peptide
6
decarboxylase
5
enzyme
5
decarboxylase aspergillus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!