Allogeneic killing by earthworm effector cells.

Nat Immun

Department of Anatomy and Cell Biology, School of Medicine, University of California Los Angeles 90024-1763, USA.

Published: August 1995

We observed spontaneous allogeneic cytotoxicity by coelomocytes (Lumbricus terrestris) using three assays: trypan blue, lactate dehydrogenase release and chromium-51 release. Cell-cell contact may not be essential to effect cytotoxicity, since killing of allogeneic cells occurred in pooled allogeneic coelomic fluid derived from worms raised in two different geographic locales. We observed no significant spontaneous cytotoxicity against autogeneic target coelomocytes haptenated with 2,4,6-trinitrobenzene sulfonic acid; however, coelomocytes effected significant spontaneous cytotoxicity against haptenated allogeneic targets. These results support the view that earthworm coelomocytes can act as effector cells that can specifically kill nonself target cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

effector cells
8
observed spontaneous
8
spontaneous cytotoxicity
8
allogeneic
5
allogeneic killing
4
killing earthworm
4
earthworm effector
4
cells
4
cells observed
4
spontaneous allogeneic
4

Similar Publications

Background: IgE-mediated food allergy is accompanied by mucosal mast cell (MMC) hyperplasia in the intestinal mucosa. Intestinal MMC numbers correlate with the severity of food allergy symptoms. However, the mechanisms by which MMCs proliferate excessively are poorly understood.

View Article and Find Full Text PDF

Genome-wide identification of binding profiles for DNA-binding proteins from the limited number of intracellular pathogens in infection studies is crucial for understanding virulence and cellular processes but remains challenging, as the current ChIP-exo is designed for high-input bacterial cells (>1010). Here, we developed an optimized ChIP-mini method, a low-input ChIP-exo utilizing a 5,000-fold reduced number of initial bacterial cells and an analysis pipeline, to identify genome-wide binding dynamics of DNA-binding proteins in host-infected pathogens. Applying ChIP-mini to intracellular Salmonella Typhimurium, we identified 642 and 1,837 binding sites of H-NS and RpoD, respectively, elucidating changes in their binding position and binding intensity during infection.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. HPV-negative HNSCC, which arises in the upper airway mucosa, is particularly aggressive, with nearly half of patients succumbing to the disease within five years and limited response to immune checkpoint inhibitors compared to other cancers. There is a need to further explore the complex immune landscape in HPV-negative HNSCC to identify potential therapeutic targets.

View Article and Find Full Text PDF

Arming T cells with a synthetically orthogonal IL-9 receptor (o9R) permits facile engraftment and potent anti-tumor functions. We considered whether the paucity of natural IL-9R expression could be exploited for T cell immunotherapy given that, in mice, high doses of IL-9 were well-tolerated without discernible immune modulation. Compared to o9R, T cells engineered with IL-9R exhibit superior tissue infiltration, stemness, and anti-tumor activity.

View Article and Find Full Text PDF

Autoimmunity affects 10% of the population. Within this umbrella, autoantibody-mediated diseases targeting one autoantigen provide a unique opportunity to comprehensively understand the developmental pathway of disease-causing B cells and autoantibodies. While such autoreactivities are believed to be generated during germinal centre reactions, the roles of earlier immune checkpoints in autoantigen-specific B cell tolerance are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!