We determined the influence of brief mild normocapnic hyperoxia, hypoxia, and hyperoxic hypercapnia on human muscle sympathetic nerve activity and R-R intervals, as quantified by both time- and frequency-domain analyses. We obtained measurements in nine healthy young adult men and women during uncontrolled and frequency (but not tidal volume) controlled breathing. Responses were evaluated with forward selection and backward elimination statistical models, with muscle sympathetic nerve activity as the dependent variable, and power spectral techniques. Hyperoxia and hypoxia did not alter arterial pressure; hypercapnia increased diastolic pressure modestly. Average R-R intervals tended to increase during hyperoxia, and decrease during hypoxia and hypercapnia. During uncontrolled breathing, changes of inspiratory gases exerted only minor effects on muscle sympathetic nerve activity; during controlled breathing, both hypoxia and hypercapnia tended to increase muscle sympathetic nerve activity. Statistical modeling suggested that chemoreceptor stimulation increased muscle sympathetic neural outflows, but that increases of sympathetic traffic were opposed by secondary increases of ventilation. Inspiratory gases modulated the frequency distribution of muscle sympathetic nerve activity strikingly: hypoxia increased sympathetic power at respiratory frequencies and hypercapnia increased sympathetic power at both respiratory and (primarily in one subject) cardiac frequencies. Our data suggest that mild brief hypoxia and hypercapnia increase human muscle sympathetic nerve activity, but that this tendency is opposed by chemoreflex-induced increases of ventilation. Our results suggest also that chemoreceptor activity exerts important influences on the frequency content, as well as the quantity of sympathetic neural outflow.
Download full-text PDF |
Source |
---|
Am J Physiol Heart Circ Physiol
January 2025
Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada.
XXXX.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University St., Iași, Romania.
This study aimed to investigate the effects of chronic sympathoinhibition on glucose uptake by the myocardium and by the skeletal muscle in an animal model of obesity associated with leptin signaling deficiency. 6 obese Zucker rats (OZR) and 6 control Lean Zucker rats (LZR) were studied during basal conditions, chronic clonidine administration (30 days, 300 µg/kg), and washout recovery period. Glucose uptake in the myocardium and in the skeletal muscle was measured using positron emission tomography (PET) and 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG).
View Article and Find Full Text PDFIntroduction Control of blood pressure following acute type B aortic dissection usually requires sympatholytic antihypertensive medication. Although sympathetic nerve activity is central to blood pressure control, its role in the hypertensive response to acute aortic dissection has not been assessed. Methods A prospective pilot study was performed over an 18-month period.
View Article and Find Full Text PDFCardiovasc Diabetol
December 2024
Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Physical medicine & rehabilitation research center, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Pompe disease is a glycogen storage disease primarily affecting striated muscles. Despite its main manifestation in muscles, patients with Pompe disease may exhibit non-muscle symptoms, such as hearing loss, suggesting potential involvement of sensory organs or the nervous system due to glycogen accumulation.
Aims: This study aimed to evaluate the presence of concomitant small and large fiber neuropathy in patients with Pompe disease.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!