Objective: To investigate (1) the possibility of survival of free mucosa "stamp" grafts fixed in the airway with a new technique using indocyanine green-dyed albumin solder activated with a diode laser and (2) the degree of improvement of wound healing in the airway by applying modified microskin transplantation techniques from burn surgery to cover a relatively large wound with a few small pieces of mucosa anchored in place with the previously mentioned technique.
Design: Three (one control and two experimental) rectangular (10 x 8 mm) wounds in tracheal mucosa were produced in four experimental animals (dogs) using a carbon dioxide laser. The control wound was left uncovered. In the first experimental wound, a mucosal flap was raised and then fixed in place by a trapdoor flap method. In the second experimental wound, two small (each 2 x 3 mm) autogenous mucosa grafts were anchored onto the surface with indocyanine green-dyed albumin activated with an 810-nm diode laser. Histomorphologically, the postoperative results from three wounds were compared.
Results: The experimental wounds were completely covered by regenerated squamous cells in 1 week and by ciliated epithelium in 2 weeks after the operation despite the discrepancy in size of the graft to wound area (1:6.7) covered with the stamp mucosa. No thermal damage from the diode laser was noted in the second experimental wounds. In the control wounds, no coverage was observed at 1 week, and only squamous cells were noted 2 weeks postoperatively. All the wounds had normal ciliated epithelium coverage at 4 weeks.
Conclusions: Transplanted stamp grafts provided similar or better healing than trapdoor flap transplants. This new technique made endoscopic mucosal grafting possible and offers a potential breakthrough in the management of laryngotracheal stenosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archotol.1995.01890070059013 | DOI Listing |
Phys Rev Lett
December 2024
University of Maryland, College Park, Joint Quantum Institute, Condensed Matter Theory Center and, Department of Physics, Maryland 20742-4111, USA.
Discrete time crystals are novel phases of matter that break the discrete time translational symmetry of a periodically driven system. In this Letter, we propose a classical system of weakly nonlinear parametrically driven coupled oscillators as a test bed to understand these phases. Such a system of parametric oscillators can be used to model period-doubling instabilities of Josephson junction arrays as well as semiconductor lasers.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Physics, Facility of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
The influence of variations in indium concentration and temperature on threshold current density (J) in In Ga As/GaAs ( = 0, 0.8 and 0.16) quantum dot (QD) laser diodes - synthesized via molecular beam epitaxy (MBE) with three distinct indium concentrations on GaAs (001) substrates - was meticulously examined.
View Article and Find Full Text PDFThe controlled visible spatial modes and vortex beams with tunable properties are highly sought after in cutting-edge applications, such as optical communication. In this study, by utilizing a hybrid pumping scheme, we demonstrate an ultra-compact, 607 nm orbital Poincaré laser based on a diode-pumped Pr:YLF laser. The system can generate various structured modes, including Laguerre-Gaussian (LG), Hermite-Gaussian (HG), and Hermite-Laguerre-Gaussian (HLG), all of which are mapped onto a first-order orbital Poincaré sphere.
View Article and Find Full Text PDFThis work investigates how misalignments of collimation lenses affect two performance criteria: minimum throughput within an angular window and maximum beam height. Based on these criteria, we establish an alignment concept for the first section of a LiDAR emitter. The performance criteria are derived from the overall LiDAR system requirements and applied to an optical system consisting of a laser diode array source, a microlens array for slow-axis collimation, and an acylinder for fast-axis collimation.
View Article and Find Full Text PDFTapered diode lasers, composed of an index-guided ridge waveguide and a gain-guided tapered amplifier, are affected by polarization mismatch between the ridge and tapered sections. Beam quality deterioration is caused by TM high-order modes generated in the ridge section. Under high current injection, these TM modes are further amplified in the tapered section due to polarization mismatch, leading to a decrease in the laser output brightness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!