The peptide guanylin, which has recently been isolated from the intestine, is involved in the regulation of fluid secretion in the intestinal epithelium by activation of guanylate cyclase C, the putative guanylin receptor. Since the latter protein is also expressed in airway epithelia, we investigated the lung of three mammalian species for the presence and cellular localization of guanylin by immunoblot (Western blot) analyses and light and electron microscopical immunocytochemistry. In Western blots of bovine, guinea pig, and rat lung extracts, three different guanylin antisera directed against the midportion and against the C terminus of the precursor molecule identified a peptide band corresponding to the apparent molecular mass of guanylin. Localization studies in the lung revealed that guanylin is exclusively confined to nonciliated secretory (Clara) cells in the lining of distal conducting airways. The presence of guanylin in the lung and particularly its specific localization to Clara cells indicate that these cells may play a pivotal role in the local (paracrine) regulation of electrolyte/water transport in airway epithelia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC41614 | PMC |
http://dx.doi.org/10.1073/pnas.92.13.5925 | DOI Listing |
Leukemia
January 2025
The Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
The FLT3 gene frequently undergoes mutations in acute myeloid leukemia (AML), with internal tandem duplications (ITD) and tyrosine kinase domain (TKD) point mutations (PMs) being most common. Recently, PMs and deletions in the FLT3 juxtamembrane domain (JMD) have been identified, but their biological and clinical significance remains poorly understood. We analyzed 1660 patients with de novo AML and found FLT3-JMD mutations, mostly PMs, in 2% of the patients.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, 85028 Potenza, Italy.
Oxidative phosphorylation and glycolysis are the main ATP-generating pathways in cell metabolism. The balance between these two pathways is frequently altered to carry out cell-specific activities in response to stimuli involving activation, proliferation, or differentiation. Despite being a useful tool for researching metabolic profiles in real time in relatively small numbers of cancer cells, the main Agilent Seahorse XF Pro Analyzer (Agilent Technologies, Santa Clara, CA, USA) guideline is currently not fully detailed in the distinction between suspensions vs.
View Article and Find Full Text PDFNat Commun
January 2025
Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, USA.
The sex chromosomes contain complex, important genes impacting medical phenotypes, but differ from the autosomes in their ploidy and large repetitive regions. To enable technology developers along with research and clinical laboratories to evaluate variant detection on male sex chromosomes X and Y, we create a small variant benchmark set with 111,725 variants for the Genome in a Bottle HG002 reference material. We develop an active evaluation approach to demonstrate the benchmark set reliably identifies errors in challenging genomic regions and across short and long read callsets.
View Article and Find Full Text PDFMol Oncol
January 2025
Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.
Forkhead box L2 (FOXL2) encodes a transcription factor essential for sex determination, and ovary development and maintenance. Mutations in this gene are implicated in syndromes involving premature ovarian failure and granulosa cell tumors (GCTs). This rare cancer accounts for less than 5% of diagnosed ovarian cancers and is causally associated with the FOXL2 c.
View Article and Find Full Text PDFNat Med
January 2025
Department of Medicine-Medical Oncology, University of Colorado Cancer Center, Denver, CO, USA.
Effective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy (n = 30) and in combination with atezolizumab (n = 183) in pretreated patients with advanced solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!