We show that oligonucleotides of CNG tracts readily adopt compact DNA structures that move unusually fast on gels. Base composition does not explain this, and non-CNG triplets (including GNC) do not form such structures. Chemical probing and melting experiments suggest that the structures probably are not hairpins. Although both long and short tracts can adopt compact structures, the structure formed by longer tracts is more compact than that formed by shorter ones. We note the possibility that such structures may form in vivo, and be instrumental in normal and/or abnormal function of human genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC306957PMC
http://dx.doi.org/10.1093/nar/23.11.1876DOI Listing

Publication Analysis

Top Keywords

compact structures
8
tracts adopt
8
adopt compact
8
structures
5
compact
4
structures dcngn
4
dcngn oligonucleotides
4
oligonucleotides solution
4
solution relevance
4
relevance fragile
4

Similar Publications

Optimization of parallel coiled cavities of different depths in microperforated panel sound absorbers.

Sci Rep

January 2025

Key Laboratory of Urban and Architectural Heritage Conservation, Ministry of Education, School of Architecture, Southeast University, 2# Sipailou, Nanjing, 210096, China.

This paper presents a microperforated panel (MPP) sound absorber with parallel coiled-up-cavities of different-depths (PCD) and the corresponding optimization on their cavities. In this study, an analytical model is initially proposed for estimating the cavity depths of the PCD-MPP absorber upon normal incidence absorption coefficient evaluation at given resonance frequencies. Cavity effective depths and normal incidence absorption coefficient are evaluated after coiling up cavities for a compact structure.

View Article and Find Full Text PDF

A styrene-glycidylmethacrylate-1-allyl-3-vinylimidazole epoxy functionalized ionomer (EFI) was synthesized, and the EFI and carbon nanotubes (CNTs) were co-introduced into poly(lactide)/poly(butylene-adipate-co-terephtalate) (PLA/PBAT) blends to fabricate high performance composites with excellent mechanical properties, fatigue-resistance and dielectric properties. It is revealed that EFI can improve the interaction force between PLA and PBAT by inducing the interfacial crosslink reaction, thereby improving the melt strength of the samples. EFI can also refine the dispersion of CNT in the composites owing to the non-covalent force between EFI and CNT, promote the formation of filler network inside composites, which is demonstrated by DMA and rheological test results.

View Article and Find Full Text PDF

With the growing attention on green starch modification technologies, this study investigates the regulatory effects of alternating magnetic field treatment on the fine structure and functional properties of pregelatinized cassava starch at different treatment times (10 min, 30 min, 50 min).The results demonstrate that magnetic field treatment not only increased starch cracks and compactness but also promoted molecular chain breakage and reorganization, hydrogen bond formation, and starch recrystallization, thereby enhancing molecular order. Moreover, the treated starch exhibited improved solubility and swelling power, alongside a positive impact on the content of slowly digestible starch.

View Article and Find Full Text PDF

Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.

View Article and Find Full Text PDF

Quantitative imaging of loop extruders rebuilding interphase genome architecture after mitosis.

J Cell Biol

March 2025

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg, Germany.

How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!