Subcutaneous implantation of Gore-Tex for facial reconstruction allows physicians to recontour the soft tissues of the face and to augment areas that are deficient of subcutaneous tissue for genetic, aging, and traumatic reasons. This article discusses the use of Gore-Tex in multiple implant sites and presents novel ideas for both facial and cervical augmentation.
Download full-text PDF |
Source |
---|
Adv Healthc Mater
January 2025
Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects.
View Article and Find Full Text PDFBiofabrication
January 2025
Univ. Bordeaux, INSERM U1026 (BioTis), CHU Bordeaux, Université de Bordeaux Collège Sciences de la Santé, 146 Rue Léo Saignat, Bordeaux, 33000, FRANCE.
Producing oral soft tissues using tissue engineering could compensate for the disadvantages of autologous grafts (limited availability and increased patient morbidity) and currently available substitutes (shrinkage). However, there is a lack of in vitro-engineered oral tissues due to the difficulty of obtaining stable pre-vessels that connect to the host and enable graft success. The main objective was to assess the connection of pre-vascularised 3D-bioprinted gingival substitutes to the host vasculature when subcutaneously implanted in immunodeficient mice.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany.
This study investigates the mechanical properties as well as and cyto- and biocompatibility of collagen membranes cross-linked with glutaraldehyde (GA), proanthocyanidins (PC), hexamethylendiisocyanate (HMDI) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EC/NHS). A non-crosslinked membrane was used as reference control (RF). The initial cytotoxic analyses revealed that the PC, EC, and HMDI crosslinked membranes were cytocompatible, while the GA crosslinked membrane was cytotoxic and thus selected as positive control in the further study.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
Introduction: Titanium is currently recognized as an excellent orthopedic implant material, but it often leads to poor osseointegration of the implant, and is prone to aseptic loosening leading to implant failure. Therefore, biofunctionalization of titanium surfaces is needed to enhance their osseointegration and immunomodulation properties to reduce the risk of implant loosening. We concluded that the utilization of PTL-Sr is a direct and effective method for the fabrication of multifunctional implants.
View Article and Find Full Text PDFEuropace
January 2025
Institute of Cardiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, Italy.
Background: The subcutaneous implantable cardioverter-defibrillator (S-ICD) is an alternative to traditional ICDs. The PRAETORIAN score, based on chest radiographs, has been validated to predict the probability of successful S-ICD defibrillation testing by assessing factors like fat thickness between the coil and sternum and generator placement.
Objective: This study evaluated the correlation between the PRAETORIAN score and clinical characteristics, as well as implantation variables.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!