To analyze the mechanism of action of the insulinomimetic agents H2O2, vanadate, and pervanadate (H2O2 and vanadate), CHO cells or CHO cells that overexpress wild-type or mutant insulin receptor and/or the insulin receptor substrate (IRS-1) were used. H2O2 or vanadate treatment alone had little or no effect on tyrosine phosphorylation of cellular proteins; however, pervanadate treatment dramatically enhanced tyrosine phosphorylation of a number of proteins including the insulin receptor and IRS-1. However, the insulin receptor and IRS-1 coimmunoprecipitate from insulin-treated but not from pervanadate-treated cells. Pervanadate-induced tyrosine phosphorylation of the insulin receptor led to an increase in insulin receptor tyrosine kinase activity toward IRS-1 in vivo and IRS-1 peptides in vitro equal to that induced by insulin treatment. Pervanadate-enhanced phosphorylation of IRS-1 led to a fifteenfold increase in IRS-1-associated phosphatidylinositol (PtdIns) 3-kinase activity. However, insulin receptor-associated PtdIns 3-kinase activity from pervanadate-treated cells was not detectable, while insulin receptor-associated PtdIns 3-kinase activity from insulin-treated cells was 20% of the IRS-1-associated activity. Thus, pervanadate but not H2O2 or vanadate alone under these conditions mimics many of insulin actions, but pervanadate treatment does not induce insulin receptor/IRS-1 association.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.240580303DOI Listing

Publication Analysis

Top Keywords

insulin receptor
28
h2o2 vanadate
20
tyrosine phosphorylation
16
insulin
12
ptdins 3-kinase
12
3-kinase activity
12
insulinomimetic agents
8
agents h2o2
8
irs-1
8
phosphorylation irs-1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!