Hydrogen peroxide (H2O2) at millimolar concentrations induces Ca2+ release from actively loaded sarcoplasmic reticulum vesicles and induces biphasic [3H]ryanodine binding behavior. High affinity [3H]ryanodine binding is enhanced at concentrations from 100 microM to 10 mM (3-4 fold). At H2O2 concentrations greater than 10 mM, equilibrium binding is inhibited. H2O2 decreased the kd for [3H]ryanodine binding by increasing its association rate, while having no effect on the rate of dissociation of [3H]ryanodine from its receptor. H2O2 (1 mM) also reduced the EC50 for Ca2+ activation from 632 nM to 335 nM. These effects were completely abolished in the presence of catalase, ruthenium red, and/or Mg2+ (Mm). H2O2-stimulated [3H]ryanodine binding is not further enhanced by either doxorubicin or caffeine. The direct interaction between H2O2 and the Ca2+ release mechanism was further demonstrated in single-channel reconstitution experiments. Peroxide, at submillimolar concentrations, activated the Ca2+ release channel following fusion of a sarcoplasmic reticulum vesicle to a bilayer lipid membrane. At millimolar concentrations of peroxide, Ca2+ channel activity was inhibited. Peroxide stimulation of Ca2+ channel activity was reversed by the thiol reducing agent dithiothreitol. Paralleling peroxide induced activation of ryanodine binding, Ca2+ transport, and single Ca2+ channel activity, it was observed that the ryanodine receptor formed large disulfide-linked protein complexes that dissociated upon addition of dithiothreitol.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.43.25557DOI Listing

Publication Analysis

Top Keywords

ca2+ release
16
[3h]ryanodine binding
16
sarcoplasmic reticulum
12
ca2+ channel
12
channel activity
12
ca2+
9
hydrogen peroxide
8
release channel
8
millimolar concentrations
8
binding enhanced
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.

Background: The vicious cycle between depression and dementia increases the risk of Alzheimer's Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.

Method: 5XFAD and wild-type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.

View Article and Find Full Text PDF

In corticostriatal nerve terminals, glutamate release is stimulated by adenosine via A receptors (ARs) and simultaneously inhibited by endocannabinoids via CB receptors (CBRs). We previously identified presynaptic AR-CBR heterotetrameric complexes in corticostriatal nerve terminals. We now explored the possible functional interaction between ARs and CBRs in purified striatal GABAergic nerve terminals (synaptosomes) and compared these findings with those on the release of glutamate.

View Article and Find Full Text PDF

This study evaluated some physicochemical properties of an experimental tricalcium silicate-based cement (ETSC) indicated for use as pulp capping or endodontic repair material; Biodentine (BD) and White MTA-Angelus (MTA) cements served as comparators. Setting time, radiopacity, sorption, and solubility were determined according to ISO 6876/2012 and compressive strength according to ISO 9917-1/2019. pH and calcium ion release capacity were also assessed.

View Article and Find Full Text PDF

Background: Dystonia is a common neurological hyperkinetic movement disorder that can be caused by mutations in anoctamin 3 (ANO3, TMEM16C), a phospholipid scramblase and ion channel. We previously reported patients that were heterozygous for the ANO3 variants S651N, V561L, A599D and S651N, which cause dystonia by unknown mechanisms.

Methods: We applied electrophysiology, Ca measurements and cell biological methods to analyze the molecular mechanisms that lead to aberrant intracellular Ca signals and defective activation of K channels in patients heterozygous for the ANO3 variants.

View Article and Find Full Text PDF

Pyrophosphate-stabilized amorphous calcium carbonates (PyACC) are promising compounds for bone repair due to their ability to release calcium, carbonate, and phosphate ions following pyrophosphate hydrolysis. However, shaping these metastable and brittle materials using conventional methods remains a challenge, especially in the form of macroporous scaffolds, yet essential to promote cell colonization. To overcome these limitations, this article describes for the first time the design and multiscale characterization of freeze-cast alginate (Alg)-PyACC nanocomposite scaffolds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!