Synapsin II is a neuron-specific phosphoprotein that selectively binds to small synaptic vesicles in the presynaptic nerve terminal. Here we report the cloning and sequencing of the 5'-flanking region of the human synapsin II gene. This sequence is very GC-rich and lacks a TATA or CAAT box. Two major transcriptional start sites were mapped. A hybrid gene consisting of the Escherichia coli chloramphenicol acetyltransferase gene under the control of 837 base pairs of the synapsin II 5'-upstream region was transfected into neuronal and nonneuronal cells. While reporter gene expression was low in neuroblastoma and non-neuronal cells, high chloramphenicol acetyltransferase activities were monitored in PC12 pheochromocytoma cells. However, there was no correlation between reporter gene expression in the transfected cells and endogenous synapsin II immunoreactivity. Using DNA-protein binding assays we showed that the transcription factors zif268/egr-1, polyoma enhancer activator 3 (PEA3), and AP2 specifically contact the synapsin II promoter DNA in vitro. Moreover, the zif268/egr-1 protein as well as PEA3 were shown to stimulate transcription of a reporter gene containing synapsin II promoter sequences. In the nervous system, zif268/egr-1 functions as a "third messenger" with a potential role in synaptic plasticity. PEA3 is expressed in the brain and its activity is regulated by proteins encoded from non-nuclear oncogenes. We postulate that zif268/egr-1 and PEA3 couple extracellular signals to long-term responses by regulating synapsin II gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.41.24361 | DOI Listing |
PLoS Genet
January 2025
Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.
Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China. Electronic address:
Cenobamate (CNB) is a novel anti-seizure medication with significant efficacy in treating epilepsy. However, in clinical trials, the most common adverse reactions observed in patients are central nervous system (CNS) symptoms. In animal studies, administration of CNB during pregnancy or lactation has been associated with adverse effects on neurodevelopment in offspring.
View Article and Find Full Text PDFMol Neurobiol
December 2024
Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
Int J Mol Sci
November 2024
The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden.
The insulin-regulated aminopeptidase (IRAP; oxytocinase) is part of the M1 aminopeptidase family and is highly expressed in many tissues, including the neocortex and hippocampus of the brain. IRAP is involved in various physiological functions and has been identified as a receptor for the endogenous hexapeptide Angiotensin IV (Ang IV). The binding of Ang IV inhibits the enzymatic activity of IRAP and has been proven to enhance learning and memory in animal models.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!