Bacteriophage Mu contains an unusually strong DNA gyrase binding site (SGS), located near the center of its genome, that is required for efficient Mu DNA replication (M. L. Pato, Proc. Natl. Acad. Sci. USA 91:7056-7060, 1994; M. L. Pato, M. M. Howe, and N. P. Higgins, Proc. Natl. Acad. Sci. USA 87:8716-8720, 1990). Replication of wild-type Mu initiates about 10 min after induction of a lysogen, while replication in the absence of the SGS is delayed about an hour. To determine which step in the replication pathway is blocked in the absence of the SGS, we inactivated the SGS by deletion and by insertion and studied the effects of these alterations on various stages of Mu DNA replication. Following induction in the absence of a functional SGS, early transcription and synthesis of the Mu-encoded replication proteins occurred normally. However, neither strand transfer nor cleavage at the Mu genome termini could be detected 40 min after induction. The data are most consistent with a requirement for the SGS in the efficient synapsis of the Mu prophage termini to form a separate chromosomal domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC177422PMC
http://dx.doi.org/10.1128/jb.177.20.5937-5942.1995DOI Listing

Publication Analysis

Top Keywords

gyrase binding
8
binding site
8
dna replication
8
proc natl
8
natl acad
8
acad sci
8
sci usa
8
min induction
8
absence sgs
8
replication
7

Similar Publications

In this work, we have adopted an easy route to synthesizing bis-1,2,3-triazole-based benzophenone compounds via a 1,3-dipolar cycloaddition reaction (Click Chemistry). All the target compounds achieved better yields though the microwave-assisted method than the conventional method. Target compounds structure were confirmed based on the IR, 1H NMR, 13C NMR and HR Mass analysis.

View Article and Find Full Text PDF

Here, we report a synthesis of fluoroquinolones carrying a monoterpene moiety at the C7 position of aromatic structure. The minimal inhibitory concentrations of fluoroquinolone fused with trans-3-hydroxy-cis-myrtanylamine 18 against Staphylococcus aureus (MSSA isolates) were two- to eightfold lower compared to moxifloxacin, although fourfold higher against MRSA isolates. The fluoroquinolone fused with (-)-nopylamine 16 was four- to eightfold less active on MSSA compared to moxifloxacin, while had similar activity on MRSA.

View Article and Find Full Text PDF

In the realm of hospital-acquired and chronic infections, stands out, demonstrating significant associations with increased morbidity, mortality, and antibiotic resistance. Antibiotic-resistant strains are believed to contribute to thousands of deaths each year. Chronic and latent infections are associated with the bacterial toxin-antitoxin (TA) system, although the mechanisms involved are poorly understood.

View Article and Find Full Text PDF

The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here, we studied the full-length human MORC2 protein biochemically.

View Article and Find Full Text PDF

Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discovery, repurposing clinically approved or investigational drugs for the treatment of tuberculosis by computational methods has become an attractive strategy. In this study, we developed a virtual screening workflow that combines multiple machine learning and deep learning models, and 11 576 compounds extracted from the DrugBank database were screened against Mtb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!