Two of the key enzymes involved in glutamate metabolism, glutaminase and glutamine synthetase, were quantitatively localized to axons and glia of the crayfish giant nerve fiber by immunocytochemistry and electron microscopy of antibody-linked gold microspheres. In Western blots, rabbit antisera for glutamine synthetase and glutaminase specifically recognized crayfish polypeptides corresponding approximately in size to subunits of purified mammalian brain enzymes. Glutamine synthetase immunoreactivity was found to be 11 times greater in the adaxonal glial cells than in the axon. Glutaminase immunoreactivity was found in somewhat greater concentration (2.5:1) in glia as compared to axoplasm. Glutamate immunoreactivity also was evaluated and found to be present in high concentration in both glia and axons, as might be expected for an important substrate of cellular metabolism. Using radiolabeled substrates it was demonstrated that glutamine and glutamate were interconverted by the native enzymes in the intact crayfish giant nerve fiber and that the formation of glutamine from glutamate occurred in the axoplasm-free nerve fiber, the cellular component of which is primarily periaxonal glia. The results of this investigation provide immunocytochemical and metabolic evidence consistent with an intercellular glutamine cycle that modulates the concentration of periaxonal glutamate and glutamine in a manner similar to that described for perisynaptic regions of the vertebrate central nervous system. These findings further corroborate previous electrophysiological evidence that glutamate serves as the axon-to-glial cell neurochemical signal that activates glial cell mechanisms responsible for periaxonal ion homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.440140305DOI Listing

Publication Analysis

Top Keywords

nerve fiber
16
crayfish giant
12
giant nerve
12
glutamine synthetase
12
glutamine
8
glutamine cycle
8
glutamine glutamate
8
glutamate
6
enzymes
4
cycle enzymes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!