Synthetic intronless genes, coding for human interleukin 1 alpha (IL 1 alpha) and interleukin 1 receptor antagonist (IL1ra), have been expressed efficiently in a specially designed prokaryotic vector, pGMCE (a pGEM1 derivative), where the target gene forms the second part of a two-cistron system. The first part of the system is a translation enhancer-containing mini-cistron, whose termination codon overlaps the start codon of the target gene. In the case of the IL1 alpha gene, the high expression level is largely due to the direct efficient translation initiation at the second cistron, whereas with the IL1ra gene in the same system, the proximal translation initiation region (TIR) provides a high level of coupled expression of the target gene. Thus, pGMCE is a potentially versatile vector for direct prokaryotic expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0378-1119(95)00488-rDOI Listing

Publication Analysis

Top Keywords

target gene
12
prokaryotic expression
8
human interleukin
8
interleukin alpha
8
receptor antagonist
8
translation initiation
8
gene
5
high-level prokaryotic
4
expression
4
system
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Foliar spray double-stranded RNA targeting HvIAP1 induces high larval and adult mortality in Henosepilachna vigintioctopunctata.

Pest Manag Sci

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

Background: Exogenous double-stranded RNA (dsRNA) has the potential to serve as an effective alternative to conventional chemical pesticides for the control of insect pests, because it can specifically inhibit essential gene expression in these organisms. However, identifying suitable gene targets remains a crucial step in the development of RNA interference (RNAi)-based pest control strategies.

Results: In this study, three apoptosis-related genes were selected to evaluate their potential for RNAi-induced lethality in Henosepilachna vigintioctopunctata via foliar spray dsRNAs.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.

View Article and Find Full Text PDF

Lipid-lowering drugs have been used in clinics widely. It is unclear whether the drugs have an effect on renal failure. We chose high-density lipoprotein cholesterol (ieu-b-109), low-density lipoprotein cholesterol (ieu-a-300), triglyceride (ieu-b-111), and total cholesterol (ebi-a-GCST90038690) as exposures.

View Article and Find Full Text PDF

Background: Bone-invasive Pituitary Neuroendocrine Tumors (BI PitNETs) epitomize an aggressive subtype of pituitary tumors characterized by bone invasion, culminating in extensive skull base bone destruction and fragmentation. This infiltration poses a significant surgical risk due to potential damage to vital nerves and arteries. However, the mechanisms underlying bone invasion caused by PitNETs remain elusive, and effective interventions for PitNET-induced bone invasion are lacking in clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!