We report here that the open reading frame YKL248, previously identified during the systematic sequencing of yeast chromosome XI [Purnelle B., Skala, J., Van Dijck, L. & Goffeau, A. (1992) Yeast 8, 977-986] encodes UDP-glucose pyrophosphorylase (UGPase), the enzyme which catalyses the reversible formation of UDP-Glc from glucose 1-phosphate and UTP. Proof for this function come from sequence alignment of the YKL248 product with UGPase of other species, from complementation studies of an Escherichia coli galU mutant deficient in UGPase activity, and from overexpression studies. In particular, the amino acid sequence motifs involved in the binding of glucose 1-phosphate and UDP-Glc are entirely conserved between the yeast, bovine, human and potato tuber UGPases, and multi-copy expression of YKL248 resulted in a 40-fold increase in UGPase activity. This gene was, therefore, renamed UGP1. Gene disruption at the UGP1 locus in a diploid strain, followed by tetrad analysis, showed that UGPase is essential for cell viability. Functional analysis of UGP1 was, therefore, carried out by generating strains in which UGPase could be either overexpressed or depleted. This was done by generating haploid strains carrying either UGP1 on a multicopy vector or the chromosomal deletion of UGP1, and rescued by a vector bearing the wild-type gene under the control of the glucose-repressible galactose-inducible promoter. The effects of overproducing UGPase on the cell metabolism and morphology were carbon-source dependent. On glucose medium, the 40-fold increase of UGPase activity was restricted to a twofold increase in the concentration of glycogen and UDP-Glc, with no significant effect on growth. In contrast, on galactose, the 40-fold increase in UGPase activity was accompanied by several effects, including a threefold reduction of the growth rate, a 3-5-fold increase in the concentrations of UDP-Glc, UDP-Gal and galactose 1-phosphate, a higher sensitivity to calcofluor white and an increase in the degree of protein glycosylation. Depletion of UGPase activity was performed by transferring the mutant strains from galactose to glucose medium. Unexpectedly, growth of these mutants on glucose was as efficient as that of the control, although the mutants contained only 5-10% wild-type UGPase activity, and a growth defect could never been obtained, even after serial transfers of the mutants to a 10% glucose medium. However, the 10-fold reduction of UGPase activity induced a multi-budding pattern, a higher resistance to zymolyase, a slight increase in the calcofluor sensitivity and a decrease in the cell-wall beta-glucan content. All these alterations, induced by manipulating the UGP1 gene, are discussed in the context of the strategic position of UDP-Glc in yeast metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1995.520_2.xDOI Listing

Publication Analysis

Top Keywords

ugpase activity
28
ugp1 gene
12
ugpase
12
40-fold increase
12
increase ugpase
12
glucose medium
12
udp-glucose pyrophosphorylase
8
glucose 1-phosphate
8
ugp1
7
activity
7

Similar Publications

Response mechanism of major secondary metabolites of to selenium nanoparticles.

Front Plant Sci

December 2024

Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China.

Selenium nanoparticles (SeNPs) can be absorbed by plants, thereby affecting plant physiological activity, regulating gene expression, and altering metabolite content. However, the molecular mechanisms by which exogenous selenium affects coll.et Hemsl plant secondary metabolites remain unclear.

View Article and Find Full Text PDF

Leaf rust caused by Puccinia triticina Erikss. can have devastating effects on wheat (Triticum aestivum L.), causing severe economic losses.

View Article and Find Full Text PDF

Exploring Redox Modulation of Plant UDP-Glucose Pyrophosphorylase.

Int J Mol Sci

May 2023

Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden.

UDP-glucose (UDPG) pyrophosphorylase (UGPase) catalyzes a reversible reaction, producing UDPG, which serves as an essential precursor for hundreds of glycosyltransferases in all organisms. In this study, activities of purified UGPases from sugarcane and barley were found to be reversibly redox modulated in vitro through oxidation by hydrogen peroxide or oxidized glutathione (GSSG) and through reduction by dithiothreitol or glutathione. Generally, while oxidative treatment decreased UGPase activity, a subsequent reduction restored the activity.

View Article and Find Full Text PDF

UDP-glucose pyrophosphorylase (UGPase) carries a freely reversible reaction, using glucose-1-P and UTP to produce UDP-glucose (UDPG) and pyrophosphate (PP), with UDPG being essential for glycosylation reactions in all organisms including, e.g., synthesis of sucrose, cellulose and glycoproteins.

View Article and Find Full Text PDF

Heterologous expression and biological characteristics of UGPases from Lactobacillus acidophilus.

Appl Microbiol Biotechnol

April 2022

State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.

Herein, two genes (LBA0625 and LBA1719) encoding UGPases (UDP-glucose pyrophosphorylase) in Lactobacillus acidophilus (L. acidophilus) were successfully transformed into Escherichia coli BL21 (DE3) to construct recombinant overexpressing strains (E-0625, E-1719) to investigate the biological characteristics of UGPase-0625 and UGPase-1719. The active sites, polysaccharide yield, and anti-freeze-drying stress of L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!