We report here that the open reading frame YKL248, previously identified during the systematic sequencing of yeast chromosome XI [Purnelle B., Skala, J., Van Dijck, L. & Goffeau, A. (1992) Yeast 8, 977-986] encodes UDP-glucose pyrophosphorylase (UGPase), the enzyme which catalyses the reversible formation of UDP-Glc from glucose 1-phosphate and UTP. Proof for this function come from sequence alignment of the YKL248 product with UGPase of other species, from complementation studies of an Escherichia coli galU mutant deficient in UGPase activity, and from overexpression studies. In particular, the amino acid sequence motifs involved in the binding of glucose 1-phosphate and UDP-Glc are entirely conserved between the yeast, bovine, human and potato tuber UGPases, and multi-copy expression of YKL248 resulted in a 40-fold increase in UGPase activity. This gene was, therefore, renamed UGP1. Gene disruption at the UGP1 locus in a diploid strain, followed by tetrad analysis, showed that UGPase is essential for cell viability. Functional analysis of UGP1 was, therefore, carried out by generating strains in which UGPase could be either overexpressed or depleted. This was done by generating haploid strains carrying either UGP1 on a multicopy vector or the chromosomal deletion of UGP1, and rescued by a vector bearing the wild-type gene under the control of the glucose-repressible galactose-inducible promoter. The effects of overproducing UGPase on the cell metabolism and morphology were carbon-source dependent. On glucose medium, the 40-fold increase of UGPase activity was restricted to a twofold increase in the concentration of glycogen and UDP-Glc, with no significant effect on growth. In contrast, on galactose, the 40-fold increase in UGPase activity was accompanied by several effects, including a threefold reduction of the growth rate, a 3-5-fold increase in the concentrations of UDP-Glc, UDP-Gal and galactose 1-phosphate, a higher sensitivity to calcofluor white and an increase in the degree of protein glycosylation. Depletion of UGPase activity was performed by transferring the mutant strains from galactose to glucose medium. Unexpectedly, growth of these mutants on glucose was as efficient as that of the control, although the mutants contained only 5-10% wild-type UGPase activity, and a growth defect could never been obtained, even after serial transfers of the mutants to a 10% glucose medium. However, the 10-fold reduction of UGPase activity induced a multi-budding pattern, a higher resistance to zymolyase, a slight increase in the calcofluor sensitivity and a decrease in the cell-wall beta-glucan content. All these alterations, induced by manipulating the UGP1 gene, are discussed in the context of the strategic position of UDP-Glc in yeast metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1995.520_2.x | DOI Listing |
Front Plant Sci
December 2024
Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China.
Selenium nanoparticles (SeNPs) can be absorbed by plants, thereby affecting plant physiological activity, regulating gene expression, and altering metabolite content. However, the molecular mechanisms by which exogenous selenium affects coll.et Hemsl plant secondary metabolites remain unclear.
View Article and Find Full Text PDFPhysiol Plant
November 2023
Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark.
Leaf rust caused by Puccinia triticina Erikss. can have devastating effects on wheat (Triticum aestivum L.), causing severe economic losses.
View Article and Find Full Text PDFInt J Mol Sci
May 2023
Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden.
UDP-glucose (UDPG) pyrophosphorylase (UGPase) catalyzes a reversible reaction, producing UDPG, which serves as an essential precursor for hundreds of glycosyltransferases in all organisms. In this study, activities of purified UGPases from sugarcane and barley were found to be reversibly redox modulated in vitro through oxidation by hydrogen peroxide or oxidized glutathione (GSSG) and through reduction by dithiothreitol or glutathione. Generally, while oxidative treatment decreased UGPase activity, a subsequent reduction restored the activity.
View Article and Find Full Text PDFPlants (Basel)
June 2022
Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden.
UDP-glucose pyrophosphorylase (UGPase) carries a freely reversible reaction, using glucose-1-P and UTP to produce UDP-glucose (UDPG) and pyrophosphate (PP), with UDPG being essential for glycosylation reactions in all organisms including, e.g., synthesis of sucrose, cellulose and glycoproteins.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
April 2022
State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.
Herein, two genes (LBA0625 and LBA1719) encoding UGPases (UDP-glucose pyrophosphorylase) in Lactobacillus acidophilus (L. acidophilus) were successfully transformed into Escherichia coli BL21 (DE3) to construct recombinant overexpressing strains (E-0625, E-1719) to investigate the biological characteristics of UGPase-0625 and UGPase-1719. The active sites, polysaccharide yield, and anti-freeze-drying stress of L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!