Developmental regulation of acetylcholinesterase transcripts in the mouse diaphragm: alternative splicing and focalization.

Eur J Neurosci

Laboratoire de Neurobiologie, CNRS URA 295, Ecole Normale Supérieure, Paris, France.

Published: August 1995

We studied the splicing and compartmentalization of acetylcholinesterase (AchE) mRNAs during muscle differentiation in the mouse, both in vitro and in vivo. We used the polymerase chain reaction (PCR) to analyse AChE mRNAs in cultures of the myogenic C2 and Sol8 cell lines, and in the developing diaphragm, from embryonic day 14 (E14). We characterized three types of alternatively spliced AChE mRNAs, encoding catalytic subunits that differ by their C-terminal regions (R, H and T). The T transcript is predominant in all cases and represents the only AChE mRNA in the adult muscle. We detected the presence of the minor R and H transcripts in the myogenic cell lines, both as myoblasts and differentiated myotubes, and also in the diaphragm from E14 until birth. At E14 the R transcript represents approximately 1% of AChE mRNA and the level of the H transcript is still lower. By in situ hybridization, we found that the T AChE mRNAs begin to preferentially accumulate at the level of the first neuromuscular contacts in the mouse diaphragm and other muscles as early as E14, e.g. concomitantly with mRNAs encoding the receptor subunits. This suggests that a common control mechanism ensures the synaptic focalization of mRNAs encoding the cholinergic proteins AChE and acetylcholine receptor during muscle development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.1995.tb00699.xDOI Listing

Publication Analysis

Top Keywords

ache mrnas
16
mrnas encoding
12
mouse diaphragm
8
cell lines
8
represents ache
8
ache mrna
8
ache
7
mrnas
6
developmental regulation
4
regulation acetylcholinesterase
4

Similar Publications

Background: Corticosteroid receptors, including mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), play important roles in inflammatory pain in the dorsal root ganglion (DRG). Although it is widely known that activating the GR reduces inflammatory pain, it has recently been shown that MR activation contributes to pain and neuronal excitability in rodent studies. Moreover, little is known about the translation of this work to humans, or the mechanisms through which corticosteroid receptors regulate inflammatory pain.

View Article and Find Full Text PDF

Background: Acupuncture is an effective treatment for knee osteoarthritis (KOA), reducing pain and improving function. While melatonin (MLT) has notable pain relief benefits, the analgesic mechanism of acupuncture in KOA and its relationship with melatonin are still unknown. This study aims to explore this mechanism.

View Article and Find Full Text PDF

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.

View Article and Find Full Text PDF

eEF2K regulates pain through translational control of BDNF.

Mol Cell

December 2024

Department of Anesthesiology, University of Wisconsin, Madison, Madison, WI, USA. Electronic address:

mRNA translation is integral to pain, yet the key regulatory factors and their target mRNAs are unclear. Here, we uncover a mechanism that bridges noxious insults to multiple phases of translational control in murine sensory neurons. We find that a painful cue triggers repression of peptide chain elongation through activation of elongation factor 2 kinase (eEF2K).

View Article and Find Full Text PDF

Decoding neuronal genes in stroke-induced pain: insights from single-nucleus sequencing in mice.

BMC Neurol

November 2024

Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu Province, 225001, P. R. China.

Background: The role of neurons in central post-stroke pain (CPSP) following thalamic hemorrhage remains unclear. This study aimed to identify key genes associated with post-thalamic hemorrhage pain and to explore their functions in neurons. Single-nucleus RNA sequencing (snRNA-seq) data from a mouse model was used for this analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!