The different molecular forms of nucleoside-monophosphate kinases (KF 2.7.4.4) and nucleoside-diphosphate kinases (KF 1.7.4.6) which are responsible for the final steps of pyrimidine nucleotide synthesis were determined in mitochondrial rat hepatic supernatant under condition of combined influence of X-ray and maximum physical exercises (running up to complete exhaustion). The maximum activity of investigated nucleosidediphosphate kinases were observed in intact animals in that fractions which were eluted with tris-HCl buffer solution (0.075 and 1.0 M, pH 7.4). X-ray radiation and physical exercises caused the deviation of chromatographic data of maximal enzymatic activities. The drastic lowering of investigated enzymes was observed after X-ray irradiation and maximum physical exhaustion. This fact is in favour for the suppression of the final steps of primidine nucleotides synthesis under explored conditions of experimental investigations.

Download full-text PDF

Source

Publication Analysis

Top Keywords

radiation physical
8
final steps
8
maximum physical
8
physical exercises
8
[the ionizing
4
ionizing radiation
4
physical
4
physical loading
4
loading molecular
4
molecular heterogeneity
4

Similar Publications

Observation of Robust Compressed CuO Octahedra and Exotic Spin Structure in CaCuFeO.

J Am Chem Soc

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

CuO octahedra usually show elongated distortion, leading to active orbitals and planar exchange interactions, while compressed CuO octahedra with active orbitals and unidirectional exchange interactions are exceptionally rare. Here, we design and synthesize a new frustrated antiferromagnet CaCuFeO through a high-pressure and high-temperature approach, in which robust compressed CuO octahedra are realized, separating the FeO sheets that comprise zigzag spin ladders. Magnetic susceptibility and specific heat measurements exhibit a long-range antiferromagnetic order below the Néel temperature of 165 K, which is further confirmed by neutron diffraction.

View Article and Find Full Text PDF

Objective: What we hear may influence postural control, particularly in people with vestibular hypofunction. Would hearing a moving subway destabilize people similarly to seeing the train move? We investigated how people with unilateral vestibular hypofunction and healthy controls incorporated broadband and real-recorded sounds with visual load for balance in an immersive contextual scene.

Design: Participants stood on foam placed on a force-platform, wore the HTC Vive headset, and observed an immersive subway environment.

View Article and Find Full Text PDF

Soft Wireless Passive Chipless Sensors for Biological Applications: A Review.

Biosensors (Basel)

December 2024

School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China.

Soft wireless passive sensors have been applied in biological, engineering, and other fields due to their advantages in powerless supply and remote data transmission. External information is obtained by soft wireless passive sensors via the external coils based on electromagnetic induction. The purpose of this review paper is to outline the biological applications of soft wireless passive chipless sensors and provide a classification of wireless passive sensors and an overall explanation of the main work.

View Article and Find Full Text PDF

Neuromodulation stands as a cutting-edge approach in the fields of neuroscience and therapeutic intervention typically involving the regulation of neural activity through physical and chemical stimuli. The purpose of this review is to provide an overview and evaluation of different neuromodulation techniques, anticipating a clearer understanding of the future developmental trajectories and the challenges faced within the domain of neuromodulation that can be achieved. This review categorizes neuromodulation techniques into genetic neuromodulation methods (including optogenetics, chemogenetics, sonogenetics, and magnetogenetics) and non-genetic neuromodulation methods (including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, transcranial ultrasound stimulation, photobiomodulation therapy, infrared neuromodulation, electromagnetic stimulation, sensory stimulation therapy, and multi-physical-factor stimulation techniques).

View Article and Find Full Text PDF

This work develops Fe-Ni particles loaded on biochar (Fe-Ni/BC) to remove U(VI) efficiently. Fe-Ni bimetallic particles loaded on biochar (BC) can improve stability and reactivity, and the mesoporous structure of BC can effectively reduce Fe aggregation. The removal ability of Fe-Ni/BC is higher than that of Fe-Ni, BC, and Fe/BC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!