Phosphorothioate oligonucleotides (S-ODNs) have the ability to modulate gene expression selectively and thus have potential therapeutic capabilities. This potential led us to investigate the protein binding characteristics of selected S-ODNs. We evaluated S-ODN interactions with bovine serum albumin (BSA) and human serum albumin (HSA) in vitro. The equilibrium dissociation constants Km for the binding of a 20 mer S-ODN with BSA and HSA range between 1.1-5.2 x 10(-5) and 2.4-3.1 x 10(-4) M, respectively. The Km for an unrelated 15 mer S-ODN binding with HSA ranges between 3.7 and 4.8 x 10(-5) M. Studies with a fluorescently labeled 27 mer S-ODN suggest cooperative binding (Hill slope = 1.67) and/or the presence of secondary binding sites on the S-ODN. HSA or BSA linked to Sepharose was incubated with a 15, 20, or 24 mer S-ODN followed by the addition of selected drugs known to be highly protein bound (nifedipine, warfarin, midazolam, probenecid, indomethacin, and mitoxantrone). Up to 30% of S-ODN was displaced by warfarin in competition binding assays. Conversely, HSA-bound warfarin was incubated with a variety of oligonucleotides, including RNA and genomic dsDNA. Maximum displacement of warfarin-bound HSA was observed following incubation with 5'-cholesterol-conjugated 20 mer S-ODN. In summary, S-ODNs are likely to interact and displace other therapeutic agents that bind to albumin, particularly those binding at site I.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ard.1995.5.131DOI Listing

Publication Analysis

Top Keywords

mer s-odn
20
binding sites
8
binding
8
s-odn
8
serum albumin
8
hsa
5
mer
5
characterization binding
4
sites extent
4
extent binding
4

Similar Publications

Objective: Technetium-99m sestamibi (MIBI) has been utilized to evaluate multi-drug resistance (MDR) phenomenon of malignant tumors and to predict chemotherapeutic effects on them. The current investigation examined the possibility of monitoring changes with respect to mRNA expression of multi-drug resistance associated protein (MRP) following antisense oligodeoxynucleotide (AS-ODN) treatment involving 99mTc-MIBI.

Methods: The human breast cancer MCF-7 cell line and its MDR-induced MCF-7/VP cell line were employed.

View Article and Find Full Text PDF

Methods have been developed to label oligonucleotides (ODNs) in the 5'-position with (76)Br via a prosthetic group on a hexylamino-linker. The purpose of the study was to explore whether the labelling procedure would prevent specific hybridisation by using reverse transcription-polymerase chain reaction (RT-PCR) followed by sequencing of the PCR product. Antisense ODNs (30 mer, specific for rat Chromogranin A [CgA] mRNA) with phosphodiester (O-ODN) or phosphothioate (S-ODN) backbone, either unlabelled or labelled with (76)Br, served as one of the primers in individual PCR reactions.

View Article and Find Full Text PDF

Two sets of 20-mer phosphorothioate-modified oligodeoxynucleotide DNAs (sODN) and 21-mer or 22-mer small interfering RNAs (siRNAs), targeted to the same coding sites in raf-1 mRNA, were compared for their abilities to reduce the amount of endogenously expressed Raf-1 protein in T24 cells. The amount of Raf-1 protein was monitored by careful quantitation of Western blots. We found that the siRNAs were somewhat less effective than the S-ODNs in reducing the Raf-1 protein level 20 hours after a 4-hour transfection.

View Article and Find Full Text PDF

Despite extensive investigations into oligonucleotide lipoplexes, virtually no work has addressed whether the physicochemical properties of these assemblies vary as a function of the constituent oligonucleotide (ODN) sequence and/or composition. The present study was aimed at answering this question. To this end, we complexed N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP) liposomes, in dispersion, with either 18-mer phosphorothiote homo-oligonucleotides composed of either adenine, thymidine or cytosine; or one of three structurally related 18-mer phosphorothioate oligonucleotides (S-ODNs) (G3139, its reverse sequence and its two-base mismatch).

View Article and Find Full Text PDF

Telomerase, a ribonucleoprotein, synthesizes telomeric repeats (TTAGGG) onto the ends of chromosomes to maintain the constant length of the telomere DNA, and its activity is detectable in approximately 85%-90% of primary human cancers. Thus, it is postulated that human telomerase might be associated with malignant tumor development and could be a highly selective target for antitumor drug design. Antisense phosphorothioate oligonucleotides (S-ODN) were investigated for their abilities to inhibit telomerase activity in the HeLa cell line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!