Hematopoietic stem cell gene therapy holds the promise of being able to treat a variety of inherited and acquired diseases of the hematopoietic stem cell. However, to date, genetic modification of the human hematopoietic stem cell has been relatively inefficient. Here, we report the results of using a bioreactor system to expand hematopoietic cells after a brief retrovirus infection using a high titer, replication defective virus encoding for murine CD18. The retrovirus transduced culture continued to produce genetically modified hematopoietic progenitors for up to 6 weeks, the duration of the culture period. Up to one-third of the long-term culture initiating cell (LTC-IC) are genetically modified by the culture conditions. Murine CD18 can be expressed on the cell surface of up to 20% of the mature cells generated by the culture system, suggesting that clinically significant levels of gene transfer may be occurring. These results demonstrate the feasibility of using continuous perfusion bioreactors as a method of efficiently modifying human hematopoietic stem cells.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!