Resonance Raman spectra of the molybdenum containing aldehyde oxidoreductase from Desulfovibrio gigas were recorded at liquid nitrogen temperature with various excitation wavelengths. The spectra indicate that all the iron atoms are organised in [2Fe-2S] type centers consistent with cysteine ligations. No vibrational modes involving molybdenum could be clearly identified. The features between 280 and 420 cm-1 are similar but different from those of typical plant ferredoxin-like [2Fe-2S] cluster. The data are consistent with the presence of a plant ferredoxin-like cluster (center I) and a unique [2Fe-2S] cluster (center II), as suggested by other spectroscopic studies. The Raman features of center II are different from those of other [2Fe-2S] clusters in proteins. In addition, a strong peak at ca. 683 cm-1, which is not present in other [2Fe-2S] clusters in proteins, was observed with purple excitation (406.7-413.1 nm). The peak is assigned to enhanced cysteinyl C-S stretching in center II, suggesting a novel geometry for this center.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0167-4838(95)00116-c | DOI Listing |
Int J Mol Sci
January 2025
Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
Nanocrystalline TiO is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped TiO in combination with p-conducting CrO. Materials were synthesized via a single-step flame spray pyrolysis (FSP) technique and comprehensively studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, transition electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Raman spectroscopy.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada.
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico.
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
Nanoelectromechanical systems (NEMS) based on atomically-thin tungsten diselenide (WSe), benefiting from the excellent material properties and the mechanical degree of freedom, offer an ideal platform for studying and exploiting dynamic strain engineering and cross-scale vibration coupling in two-dimensional (2D) crystals. However, such opportunity has remained largely unexplored for WSe NEMS, impeding exploration of exquisite physical processes and realization of novel device functions. Here, we demonstrate dynamic coupling between atomic lattice vibration and nanomechanical resonances in few-layer WSe NEMS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!