AI Article Synopsis

  • E461H-beta-galactosidase, a variant of the enzyme from E. coli, shows only 10% of its normal activity without divalent metals and is inactivated by several of these metals, contrary to the wild type which is activated by Mg2+ and Mn2+.
  • Significantly more Mg2+ is required to inactivate the substituted enzyme at pH 7 compared to the wild type, and inactivation occurs after about 20 minutes, with reactivation taking around 60 minutes upon removing the metal.
  • The interaction with Mg2+ is much stronger at pH 9, leading to rapid inactivation, and Mg2+ reduces the rate of key enzymatic reactions by about 50-fold

Article Abstract

beta-galactosidase (Escherichia coli) with a His substituted for Glu-461 retained about 10% of its normal activity in the absence of divalent metals but was inactivated rather than activated by Mg2+, Mn2+, Zn2+, Ni2+, Cu2+, and Co2+. Since Zn2+, Ni2+, Cu2+, and Co2+ do not interact with wild type beta-galactosidase while Mg2+ and Mn2+ activate and Ca2+ binds but has no effect on wild type beta-galactosidase activity, the substituted enzyme has very different divalent metal interactions. A much larger amount of Mg2+ than of the other divalent metal ions was needed to inactivate the substituted enzyme at pH 7 (half-maximal activity was at 12.5 mM Mg2+ while the half-maximal activities with the other metals were at micromolar levels) compared to the amount of Mg2+ needed to activate the wild type enzyme. The inactivation of E461H-beta-galactosidase caused by Mg2+ took about 20 min. Reactivation by removal of the divalent metal took about 60 min. Interaction with Mg2+ was about 10(7)-fold stronger at pH 9 than at pH 7, and inactivation occurred in less than 2 min at higher pH values. "Galactosylation" (k2, cleavage of the glycosidic bond) seemed to be rate-limiting for E461H-beta-galactosidase at pH values above 6 with both o-nitrophenyl beta-D-galactopyranoside and p-nitrophenyl beta-D-galactopyranoside in both the presence and absence of Mg2+. Mg2+ caused decreases (about 50-fold) of the k2 values of E461H-beta-galactosidase (apparent pKa was about 6.8).(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00041a022DOI Listing

Publication Analysis

Top Keywords

divalent metal
16
wild type
12
mg2+
9
escherichia coli
8
mg2+ mn2+
8
zn2+ ni2+
8
ni2+ cu2+
8
cu2+ co2+
8
type beta-galactosidase
8
substituted enzyme
8

Similar Publications

Native ion channels play key roles in biological systems, and engineered versions are widely used as chemogenetic tools and in sensing devices . Protein design has been harnessed to generate pore-containing transmembrane proteins, but the capability to design ion selectivity based on the interactions between ions and selectivity filter residues, a crucial feature of native ion channels , has been constrained by the lack of methods to place the metal-coordinating residues with atomic-level precision. Here we describe a bottom-up RFdiffusion-based approach to construct Ca channels from defined selectivity filter residue geometries, and use this approach to design symmetric oligomeric channels with Ca selectivity filters having different coordination numbers and different geometries at the entrance of a wide pore buttressed by multiple transmembrane helices.

View Article and Find Full Text PDF

The diverse microbiota of the intestine is expected to benefit the host, yet the beneficial metabolites derived from the microbiota are still poorly understood. Enterobactin (Ent) is a well- known secreted iron-scavenging siderophore made by bacteria to fetch iron from the host or environment. Little was known about a positive role of Ent until a recent discovery in the nematode indicated a beneficial role of Ent in promoting mitochondrial iron level in the animal intestine.

View Article and Find Full Text PDF

The diverse microbiota of the intestine is expected to benefit the host, yet the beneficial metabolites derived from the microbiota are still poorly understood. Enterobactin (Ent) is a well-known secreted iron-scavenging siderophore made by bacteria to fetch iron from the host or environment. Little was known about a positive role of Ent until a recent discovery in the nematode C.

View Article and Find Full Text PDF

Lanthanides (Ln) are typically found in the +3 oxidation state. However, in recent decades, their chemistry has been expanded to include the less stable +2 oxidation state across the entire series except promethium (Pm), facilitated by the coordination of ligands such as trimethylsilylcyclopentadienyl, CHSiMe (Cp'). The complexes have been the workhorse for the synthesis and theoretical study of the fundamental aspects of divalent lanthanide chemistry, where experimental and computational evidence have suggested the existence of different ground state (GS) configurations, 4f or 4f 5d, depending on the specific metal.

View Article and Find Full Text PDF

Dexmedetomidine Inhibits Ferroptosis by Regulating the SRY-Box Transcription Factor 9/Divalent Metal Transporter-1 Axis to Alleviate Cerebral Ischemia/Reperfusion Injury.

Chem Biol Drug Des

January 2025

Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.

Cerebral ischemia/reperfusion injury (IRI) is pathologically associated with ferroptosis. Dexmedetomidine (Dex) exerts neuroprotective activity after cerebral IRI. Our work focused on probing the pharmacologic effect of Dex on ferroptosis during cerebral IRI and the mechanisms involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!