Glycosylphosphatidylinositol (GPI) linkage is a fairly common means of anchoring membrane proteins to eukaryotic cells, although the exact function of the GPI linkage is not clear. The nascent form of a typical GPI protein contains a hydrophobic NH2-terminal signal peptide that directs it to the ER. There the signal peptide is removed by NH2-terminal signal peptidase. Nascent forms of GPI-linked proteins contain a second hydrophobic peptide at their COOH terminus. The COOH-terminal peptide is also removed during processing and the GPI moiety is ultimately linked to what had been an internal sequence in the nascent protein. Two independent pathways are involved in the biosynthesis of GPI proteins, GPI formation, and processing of the nascent protein with attachment of the GPI moiety. Studies in whole cells and in cell-free systems indicate that structural requirements around the COOH-terminal cleavage site of nascent proteins are similar to those at the cleavage site of NH2-terminal signal peptidase. However, COOH-terminal processing requires a transmidase for which evidence is presented as well as a proposed mechanism of its action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev.bi.64.070195.003023 | DOI Listing |
Front Oncol
December 2024
Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.
The MAP2K7 signaling pathway activates the c-Jun NH2-terminal protein kinase (JNK) in response to stress signals, such as inflammatory cytokines, osmotic stress, or genomic damage. While there has been interest in inhibiting JNK due to its involvement in inflammatory processes and cancer, there is increasing focus on developing MAP2K7 inhibitors to enhance specificity when MAP2K7 activation is associated with disease progression. Despite some progress, further research is needed to fully comprehend the role of MAP2K7 in cancer and assess the potential use of kinase inhibitors in cancer therapy.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
Redox Biol
November 2024
State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China. Electronic address:
Toxins (Basel)
August 2024
Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
is an important foodborne pathogen. Cholix cytotoxin (Cholix), produced by , is a novel eukaryotic elongation factor 2 (eEF2) adenosine diphosphate ribosyltransferase that causes host cell death by inhibiting protein synthesis. However, the role of Cholix in the infectious diseases caused by remains unclear.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.
Background: Dictyophora indusiata polysaccharide is an important bioactive component of D. indusiata, playing an important role in alleviating inflammation. The present study aimed to investigate the anti-inflammatory effect and mechanism of D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!