Interactions between angiotensin and nitric oxide in the renal response to volume expansion.

Am J Physiol

Departamento de Fisiología, Facultad de Medicina, Murcia, Spain.

Published: September 1995

This study examined, in anesthetized dogs, the possible interactions between nitric oxide (NO) and angiotensin II (ANG II) in mediating the renal response to an extracellular volume expansion (ECVE). It was found that the intrarenal maintenance of ANG II levels (group 1) or the intrarenal NO synthesis inhibition (group 2) did not induce changes in renal hemodynamics but reduced (P < 0.05) the ECVE-induced increments in sodium excretion and fractional lithium excretion (FeLi). In the third group, ANG II synthesis was inhibited during NO synthesis blockade. It was found in this group that the NO synthesis inhibition reduced the ECVE-induced increment in sodium excretion (P < 0.05) but did not modify the ECVE-induced increment in FeLi. These results suggest that the increase of proximal sodium reabsorption induced by the No synthesis inhibition is mediated by endogenous ANG II levels. In the fourth group, it was observed that NO synthesis inhibition, during the intrarenal maintenance of ANG II levels, induced a decrease of renal blood flow (P < 0.05) and reduced the natriuretic response to ECVE to a lower level (P < 0.05) than that observed in groups 1 and 2. The results of this group suggest that endogenous NO modulates the vasoconstrictor and antinatriuretic effects of ANG II during an ECVE. In summary, the results of this study suggest that there is an important interaction between NO and ANG II in mediating the renal response to an ECVE.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.1995.269.3.R504DOI Listing

Publication Analysis

Top Keywords

synthesis inhibition
16
renal response
12
ang levels
12
nitric oxide
8
volume expansion
8
ang mediating
8
mediating renal
8
intrarenal maintenance
8
maintenance ang
8
sodium excretion
8

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!