To investigate the mechanism of sepsis-associated hyperbilirubinemia we have studied hepatocanalicular transport of organic anions in a rat model of endotoxemia. Rats were injected intravenously with lipopolysaccharides (LPS), and at different times after injection, canalicular transport of 2,4-dinitrophenyl-S-glutathione (GS-DNP), as a model organic anion, was measured in perfused livers and isolated hepatocytes. In isolated liver perfusion experiments the initial biliary GS-DNP secretion rate was found to be significantly decreased 18 h after injection with 2 mg/kg LPS. In isolated hepatocytes from these rats, GS-DNP efflux rate was also significantly decreased (193.0 +/- 67 and 448.3 +/- 53 nmol.min-1.g dry wt-1 in endotoxemic and normal hepatocytes, respectively). Inhibition of GS-DNP effluxin isolated endotoxemic hepatocytes was dose dependent and reached a maximum with 0.25 mg/kg LPS. Inhibition was maximal at 12 h after LPS injection. Transport activity gradually returned to normal in 4-5 days after endotoxemia was induced. Dexamethasone pretreatment partially reversed the inhibition of GS-DNP transport in isolated endotoxemic hepatocytes. The phorbol ester phorbol 12-myristate 13-acetate increased GS-DNP efflux by 73 +/- 16 and 24 +/- 8% in endotoxemic and control hepatocytes, respectively, but could not restore the transport activity of endotoxemic hepatocytes to control levels. These results show that canalicular organic anion transport is decreased in the endotoxemic liver; this may play a role in the frequently observed hyperbilirubinemia during sepsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.1995.269.3.G427 | DOI Listing |
Chemphyschem
March 2025
Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076, Siegen, GERMANY.
Organic-inorganic halocuprates(I) form a promising class of light-emitting materials with high photoluminescence (PL) quantum yield. However, the understanding of their emission properties and the PL mechanism is still limited. Here, we investigate thin films of bis(tetrapropylammonium) hexa-µ-bromo-tetrahedro-tetracuprate(I), [N(C3H7)4]2[Cu4Br6], which has a zero-dimensional (0D) molecular salt structure containing [Cu4Br6]2- ions.
View Article and Find Full Text PDFChemosphere
March 2025
School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China. Electronic address:
A novel adsorbent is prepared from waste cotton fiber by a simple pyrolysis-activation process, and it can efficiently adsorb many kinds of organic pollutants (cationic/anionic dyes and antibiotics etc.). The obtained cotton-based activated carbon (CAC) with large specific surface area (3709 m g) and suitable pore structure provide abundant active sites and fast channels for the adsorption of pollutant molecules.
View Article and Find Full Text PDFJ Chromatogr A
February 2025
School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China. Electronic address:
Endocrine disrupting chemicals (EDCs) have received significant attention in the food field due to their potential health risks. Herein, we proposed a novel core-shell structure magnetic cationic covalent organic framework (EB-DHTA-iCOF@FeO) designed for the efficient enrichment of trace-level EDCs in foodstuffs and analyzed using HPLC-MS/MS. Due to the phenolic EDCs structure possessing hydroxyl functional groups which become protonated under alkaline conditions, resulting in the formation of negatively charged anions.
View Article and Find Full Text PDFEnviron Monit Assess
March 2025
Department of Civil, Environment & Geomatic Engineering, University College London (UCL), Gower Street, London, WC1E 6BT, UK.
Industrialization and population explosion are ultimately affecting freshwater resources. Bahawalpur is a rapidly growing city in Pakistan where groundwater is the major source of drinking water. However, groundwater is also being contaminated due to various anthropogenic sources.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!