Increase in cardiac output and PEEP as mechanism of pulmonary optimization.

Rev Esp Fisiol

Departamento de Fisiología, Facultad de Medicina, Universidad Central de Venezuela, Caracas.

Published: March 1995

The influence of cardiac output (CO) and PEEP on pulmonary shunt (Qs/Qt) has been the subjects of considerable investigation but findings are controversial. The role of CO and PEEP on 19 isolated rabbit lung preparations perfused with hypoxic mixture (6% CO2, 10% O2, and 84% N2), which resulted in a constant oxygen venous pressure (64 +/- 5.6 mmHg) has been studied. The first group of 11 preparations were used to study the influence of CO modifications with room air ventilation on the Qs/Qt when the CO rises in 48%; in the second group simultaneous modifications in CO and PEEP (0.5 and 10 cm H2O) were performed. A positive correlation (p < 0.01) in Qs/Qt (0.048 +/- 0.04 to 0.12933 +/- 0.09) was found when the CO increased in the first experimental group, the fluid filtration rate (FFR) also increased and the pulmonary vascular resistance (PVR) remained stable. In the second group an increase of 5 and 10 cm H2O of PEEP at constant CO reduced the Qs/Qt (0.0361 +/- 0.02 to 0.0184 +/- 0.006) while it increased the arterio-venous oxygen difference, PVR and FFR. During high CO conditions increase of 5 and 10 cm H2O of PEEP reduced the Qs/Qt (0.099 +/- 0.03 to 0.027 +/- 0.02) and FFR. These data suggest that when the Qs/Qt is increased, the use of PEEP can compensate the ventilation/perfusion alterations and restore pulmonary gas exchange.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cardiac output
8
output peep
8
second group
8
increase h2o
8
h2o peep
8
reduced qs/qt
8
+/- 002
8
peep
7
+/-
7
qs/qt
6

Similar Publications

Absence of functional acid-α-glucosidase (GAA) leads to early-onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model ( ) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on post-natal day 1; rats were studied at 6-12 months old.

View Article and Find Full Text PDF

PINK1 modulates Prdx2 to reduce lipotoxicity-induced apoptosis and attenuate cardiac dysfunction in heart failure mice with a preserved ejection fraction.

Clin Transl Med

January 2025

Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China.

Introduction: Heart failure with preserved ejection fraction (HFpEF) is a complex condition characterized by metabolic dysfunction and myocardial lipotoxicity. The roles of PTEN-induced kinase 1 (PINK1) and peroxiredoxin-2 (Prdx2) in HFpEF pathogenesis remain unclear.

Objective: This study aimed to investigate the interaction between PINK1 and Prdx2 to mitigate cardiac diastolic dysfunction in HFpEF.

View Article and Find Full Text PDF

Background: Venous waveform analysis is an emerging technique to estimate intravascular fluid status by fast Fourier transform deconvolution. Fluid status has been shown proportional to , the amplitude of the fundamental frequency of the waveform's cardiac wave upon deconvolution. Using a porcine model of distributive shock and fluid resuscitation, we sought to determine the influence of norepinephrine on of the central venous waveform.

View Article and Find Full Text PDF

Advances in the Treatment of Neonatal Coarctation of the Aorta.

Pediatrics

January 2025

Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany.

Coarctation of the aorta (CoA) is a potentially life-threatening congenital and obstructive anomaly of the distal aortic arch. After constriction of the ductus arteriosus, neonates may develop critical CoA in the isthmus area and present with severe left ventricular dysfunction or even cardiac failure. Low cardiac output and abdominal hypoperfusion (distal to the coarctation) may lead to metabolic derangements and clinical deterioration.

View Article and Find Full Text PDF

Objective: Diastolic dysfunction (DD) is defined as impaired left ventricular (LV) relaxation, caused by structural or functional heart diseases. We sought to assess the role of cardiac CT angiography (CCTA) as a tool to evaluate LV DD in patients with normal EF using the diastolic expansion index (DEI), as compared to transthoracic echocardiography (TTE) as the gold standard.

Methods: Patients presenting with atypical chest pain with suspected coronary artery disease (CAD) and having a normal LV ejection fraction on TTE underwent CCTA using a dual source CT scanner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!