Psychosocial effects of enhanced external counterpulsation in the angina patient.

Psychosomatics

Department of Psychiatry and Behavioral Science, SUNY at Stony Brook, USA.

Published: November 1995

Enhanced external counterpulsation (EECP) is a noninvasive pantaloon device designed to increase coronary artery flow in the treatment of angina. This pilot study, conducted in 1992-1993, which used psychosocial testing pre- and posttreatment, yielded data suggesting that EECP is well tolerated psychosocially and produces improvement in the anginal syndrome. More comprehensive research is under way to test these preliminary conclusions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0033-3182(95)71631-0DOI Listing

Publication Analysis

Top Keywords

enhanced external
8
external counterpulsation
8
psychosocial effects
4
effects enhanced
4
counterpulsation angina
4
angina patient
4
patient enhanced
4
counterpulsation eecp
4
eecp noninvasive
4
noninvasive pantaloon
4

Similar Publications

Interfered by external factors, the receptive field limits the traditional CNN multispectral remote sensing building change detection method. It is difficult to obtain detailed building changes entirely, and redundant information is reused in the encoding stage, which reduces the feature representation and detection performance. To address these limitations, we design a Siamese network of shared attention aggregation to learn the detailed semantics of buildings in multispectral remote sensing images.

View Article and Find Full Text PDF

This study examined internal, external training loads, internal:external ratios, and aerobic adaptations for acute and short-term chronic repeated-sprint training (RST) with blood flow restriction (BFR). Using randomised crossover (Experiment A) and between-subject (Experiment B) designs, 15 and 24 semi-professional Australian footballers completed two and nine RST sessions, respectively. Sessions comprised three sets of 5-7 × 5-second sprints and 25 seconds recovery, with continuous BFR (45% arterial occlusion pressure) or without (Non-BFR).

View Article and Find Full Text PDF

Enhanced high-energy proton radiation hardness of ZnO thin-film transistors with a passivation layer.

Nano Converg

January 2025

Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeolabuk-do, 56212, Republic of Korea.

Metal-oxide thin-film semiconductors have been highlighted as next-generation space semiconductors owing to their excellent radiation hardness based on their dimensional advantages of very low thickness and insensitivity to crystal structure. However, thin-film transistors (TFTs) do not exhibit intrinsic radiation hardness owing to the chemical reactions at the interface exposed to ambient air. In this study, significantly enhanced radiation hardness of AlO-passivated ZnO TFTs against high-energy protons with energies of up to 100 MeV is obtained owing to the passivation layer blocking interactions with external reactants, thereby maintaining the chemical stability of the thin-film semiconductor.

View Article and Find Full Text PDF

From trade-off to synergy: how nutrient status modulates plant resistance to herbivorous insects?

Adv Biotechnol (Singap)

October 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.

The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.

View Article and Find Full Text PDF

An explainable transformer model integrating PET and tabular data for histologic grading and prognosis of follicular lymphoma: a multi-institutional digital biopsy study.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu City, Sichuan Province, 610041, China.

Background: Pathological grade is a critical determinant of clinical outcomes and decision-making of follicular lymphoma (FL). This study aimed to develop a deep learning model as a digital biopsy for the non-invasive identification of FL grade.

Methods: This study retrospectively included 513 FL patients from five independent hospital centers, randomly divided into training, internal validation, and external validation cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!