Inward-rectifier, G-protein-regulated and ATP-dependent K+ channels form a novel gene family of related proteins which share two transmembrane segments as a common structural feature. These K+ channels are only distantly related to the voltage-gated Shaker-type K+ channels comprising six transmembrane segments. Although the quaternary structure of voltage-gated K+ channels has been extensively studied in the past, little is known about subunit assembly of inward-rectifier K+ channels. Differential sensitivity of inward-rectifier K+ channels to voltage-dependent pore block by spermine was used to analyse subunit assembly. It is shown that inward-rectifier K+ channel proteins are composed of four subunits whose assembly obeys the rules of a binomial distribution. 'Strong' and 'mild' inward-rectifier K+ channel subunits (BIR10 and ROMK1) which are co-expressed in individual auditory hair cells form hetero-tetramers. Distribution of these hetero-tetramers, however, is not binomial. Hetero- and homo-oligomeric channels form with similar probabilities resulting in independent channel populations with distinct functional properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rspb.1995.0145 | DOI Listing |
Elife
May 2022
Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States.
A long-standing goal in protein science and clinical genetics is to develop quantitative models of sequence, structure, and function relationships to understand how mutations cause disease. Deep mutational scanning (DMS) is a promising strategy to map how amino acids contribute to protein structure and function and to advance clinical variant interpretation. Here, we introduce 7429 single-residue missense mutations into the inward rectifier K channel Kir2.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
June 2022
Department of Pathology, NYU School of Medicine, New York, New York.
Sarcolemmal/plasmalemmal ATP-sensitive K (K) channels have key roles in many cell types and tissues. Hundreds of studies have described how the K channel activity and ATP sensitivity can be regulated by changes in the cellular metabolic state, by receptor signaling pathways and by pharmacological interventions. These alterations in channel activity directly translate to alterations in cell or tissue function, that can range from modulating secretory responses, such as insulin release from pancreatic β-cells or neurotransmitters from neurons, to modulating contractile behavior of smooth muscle or cardiac cells to elicit alterations in blood flow or cardiac contractility.
View Article and Find Full Text PDFNano Lett
February 2022
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
Bioinspired nanochannels have emerged as a powerful tool for bioengineering and biomedical research due to their robust mechanical and controllable chemical properties. Inspired by inward-rectifier potassium (K) channels, herein, the charged peptide assembly has been introduced into a nano-confined space for the modulation of ion current rectification (ICR). Peptide-responsive reaction-triggered sequence changes can contribute to polarity conversion of the surface charge; therefore, ICR reversal (ICRR) is generated.
View Article and Find Full Text PDFPlant Physiol
December 2021
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
AKT2 potassium (K+) channels are members of the plant Shaker family which mediate dual-directional K+ transport with weak voltage-dependency. Here we show that OsAKT2 of rice (Oryza sativa) functions mainly as an inward rectifier with strong voltage-dependency and acutely suppressed outward activity. This is attributed to the presence of a unique K191 residue in the S4 domain.
View Article and Find Full Text PDFCardiovasc Res
July 2021
Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, PO Box 427, Szeged 6720, Hungary.
Aims: Subunit interactions at the cytoplasmic domain interface (CD-I) have recently been shown to control gating in inward rectifier potassium channels. Here we report the novel KCNJ2 variant p.Glu293Lys that has been found in a patient with Andersen-Tawil syndrome type 1 (ATS1), causing amino acid substitution at the CD-I of the inward rectifier potassium channel subunit Kir2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!