Signalling downstream of activated mammalian Notch.

Nature

Unité de Biologie Moléculaire de L'Expression Génique, URA 1149 CNRS, Institut Pasteur, Paris, France.

Published: September 1995

Notch belongs to a family of transmembrane proteins that are widely conserved from flies to vertebrates and are thought to be involved in cell-fate decisions. In Drosophila, the Suppressor of hairless (Su(H)) gene and genes of the Enhancer of split (E(Spl)) complex, which encode proteins of the basic helix-loop-helix type have been implicated in the Notch signalling pathway. Mammalian homologues of E(Spl), such as the mouse Hairy enhancer of split (HES-1), have been isolated. Both HES-1 and the intracellular domain of murine Notch (mNotch) are able to block MyoD-induced myogenesis. Here we show that activated forms of mNotch associate with the human analogue of Su(H), KBF2/RBP-J kappa (refs 8,9) and act as transcriptional activators through the KBF2-binding sites of the HES-1 promoter.

Download full-text PDF

Source
http://dx.doi.org/10.1038/377355a0DOI Listing

Publication Analysis

Top Keywords

enhancer split
8
signalling downstream
4
downstream activated
4
activated mammalian
4
notch
4
mammalian notch
4
notch notch
4
notch belongs
4
belongs family
4
family transmembrane
4

Similar Publications

Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.

View Article and Find Full Text PDF

Low-Level Fe Doping in CoMoO Enhances Surface Reconstruction and Electronic Modulation Creating an Outstanding OER Electrocatalyst for Water Splitting.

Inorg Chem

January 2025

Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.

Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.

View Article and Find Full Text PDF

Research on water splitting is paramount for developing low-carbon alternative energy sources. Nevertheless, creating an efficient, cost-effective, and bifunctional electrocatalyst that facilitates both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) remains an elusive goal. In this work, we report a novel hybrid nanostructured electrocatalyst by combining and pyrolyzing MXene, MIL-53(Fe), and ZIF-67.

View Article and Find Full Text PDF

Establishing and regulating the ferroelectric polarization in ferroelectric nano-scale catalysts has been recognized as an emerging strategy to advance water splitting reactions, with the merits of improved surface charge density, high charge transfer rate, increased electronic conductivity, the creation of real active sites, and optimizing the chemisorption energy. As a result, engineering and tailoring the ferroelectric polarization induced internal electric field provides significant opportunities to improve the surface and electronic characteristics of catalysts, thereby enhancing the water splitting reaction kinetics. In this review, an interdisciplinary and comprehensive summary of recent advancements in the construction, characterization, engineering and regulation of the polarization in ferroelectric-based catalysts for water splitting is provided, by exploiting a variety of external stimuli.

View Article and Find Full Text PDF

This study explores the propagation dynamics of Bessel-Gaussian (BG) beams, focusing on vortex-splitting behavior under short-range atmospheric conditions with varying disturbances. Using the split-step beam propagation method, the research reveals that greater atmospheric turbulence and longer transmission distances enhance both the average vortex splitting distance and its variance while reducing the average topological charge of the received OAM mode. Conversely, laminar conditions promote beam stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!