Mol Cell Biol
Department of Biology, Syracuse University, New York 13244, USA.
Published: October 1995
We identified and isolated a Saccharomyces cerevisiae gene which, when overexpressed, suppressed the temperature-sensitive phenotype of cells expressing a mutant allele of the gene encoding the mitochondrial chaperonin, Hsp60. This gene, SCS1 (suppressor of chaperonin sixty-1), encodes a 757-amino-acid protein of as yet unknown function which, nonetheless, has human, rice, and Caenorhabditis elegans homologs with high degrees (ca. 60%) of amino acid sequence identity. SCS1 is not an essential gene, but SCS1-null strains do not grow above 37 degrees C and show some growth-related defects at 30 degrees C as well. This gene is expressed at both 30 and 38 degrees C, producing little or no differences in mRNA levels at these two temperatures. Overexpression of SCS1 could not complement an HSP60-null allele, indicating that suppression was not due to the bypassing of Hsp60 activity. Of 10 other hsp60-ts alleles tested, five could also be suppressed by SCS1 overexpression. There were no common mutant phenotypes of the strains expressing these alleles that give any clue as to why they were suppressible while others were not. An epitope (influenza virus hemagglutinin)-tagged form of SCS1 in single copy complemented an SCS1-null allele. The Scs1-hemagglutinin protein was found to be at comparable levels and in similar multiply modified forms in cells growing at both 30 and 38 degrees C. Surprisingly, when localized either by cell fractionation procedures or by immunocytochemistry, these proteins were found not in mitochondria but in the cytosol. The overexpression of SCS1 had significant effects on the cellular levels of mRNAs encoding the proteins Cpn10 and Mgel, two other mitochondrial protein cochaperones, but not on mRNAs encoding a number of other mitochondrial or cytosolic proteins analyzed. The implications of these findings are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC230812 | PMC |
http://dx.doi.org/10.1128/MCB.15.10.5618 | DOI Listing |
Curr Biol
July 2011
Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange for photosynthesis in response to light, CO(2), and phytohormone abscisic acid. Phototropins (phot1 and phot2) are plant blue-light receptor kinases and mediate stomatal opening via activation of the plasma membrane H(+)-ATPase. However, the signaling mechanism from phototropins to the H(+)-ATPase has yet to be determined.
View Article and Find Full Text PDFMol Cell Biol
October 1995
Department of Biology, Syracuse University, New York 13244, USA.
We identified and isolated a Saccharomyces cerevisiae gene which, when overexpressed, suppressed the temperature-sensitive phenotype of cells expressing a mutant allele of the gene encoding the mitochondrial chaperonin, Hsp60. This gene, SCS1 (suppressor of chaperonin sixty-1), encodes a 757-amino-acid protein of as yet unknown function which, nonetheless, has human, rice, and Caenorhabditis elegans homologs with high degrees (ca. 60%) of amino acid sequence identity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.