Non-LTR retrotransposons, also known as LINEs, transpose by reverse transcription of an RNA intermediate. Their mechanism of transposition is apparently different from that of retrotransposons and similar to that of proviruses of retroviruses. The I factor is responsible for the I-R system of hybrid dysgenesis in Drosophila melanogaster. Inducer strains contain several functional I factors whereas reactive strains do not. Transposition of I factors can be experimentally induced: they are stable in inducer strains, but transpose at high frequency in the germline of females, known as SF females, produced by crossing reactive females and inducer males. We have constructed an I element, called IviP2, marked with the vermilion gene, the coding sequence of which was interrupted by an intron. Splicing of the intron can only occur in the transcript initiated from the I element promoter. Transposed copies expressing a wild-type vermilion phenotype were recovered in the germline of SF females in which I factors were actively transposing. This indicates that trans-complementation of a defective I element, deficient for the second open reading frame, by functional I factors can occur in the germline of dysgenic females.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02191643DOI Listing

Publication Analysis

Top Keywords

defective element
8
actively transposing
8
dysgenic females
8
drosophila melanogaster
8
inducer strains
8
functional factors
8
germline females
8
females
6
factors
5
genetically tagged
4

Similar Publications

The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.

View Article and Find Full Text PDF

Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging.

View Article and Find Full Text PDF

Zinc nitride (ZnN) comprises earth-abundant elements, possesses a small direct bandgap, and is characterized by high electron mobility. While these characteristics make the material a promising compound semiconductor for various optoelectronic applications, including photovoltaics and thin-film transistors, it commonly exhibits unintentional degenerate n-type conductivity. This degenerate character has significantly impeded the development of ZnN for technological applications and is commonly assumed to arise from incorporation of oxygen impurities.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!