Estimating smoothness in statistical parametric maps: variability of p values.

J Comput Assist Tomogr

Wellcome Department of Cognitive Neurology, Hammersmith Hospital, London, England.

Published: November 1995

Objective: The smoothness parameter that characterises the spatial dependence of pixel values in functional brain images is usually estimated empirically from the data. Since this parameter is essential for the assessment of significant changes in brain activity, it is important to know (a) the variance of its estimator and (b) how this variability affects the results of the ensuing statistical analysis.

Materials And Methods: In this article, we derive an approximate expression for the variance of the smoothness estimator and investigate the effects of this variability on assessing the significance of cerebral activation in statistical parametric maps using a verbal fluency PET activation experiment.

Results: Our results suggest that, for p values around 0.05, the variability in the p value (due to smoothness estimation) is approximately 20%.

Conclusion: The effect of the assessment of the spatial dependency of the data is far from being negligible, and this suggests a more comprehensive methodology for functional imaging than the one used so far. This work provides a simple tool for taking into account this effect.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004728-199509000-00017DOI Listing

Publication Analysis

Top Keywords

statistical parametric
8
parametric maps
8
estimating smoothness
4
smoothness statistical
4
variability
4
maps variability
4
variability values
4
values objective
4
objective smoothness
4
smoothness parameter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!