We exploited the mechanism underlying thrombin receptor activation to develop a novel screening method to identify peptide agonists. The thrombin receptor is activated by limited proteolysis of its amino-terminal exodomain. Thrombin cleaves this domain to unmask a new amino terminus, which then functions as a tethered peptide agonist, binding intramolecularly to the body of the receptor to trigger signaling. The thrombin receptor's amino-terminal exodomain can also donate the tethered agonist intermolecularly to activate nearby thrombin receptors. We utilized this ability by co-expressing a "tethered ligand library," which displayed the thrombin receptor's amino-terminal exodomain bearing random pentapeptides in place of the native tethered ligand together with target receptors in Xenopus oocytes. Clones that conferred thrombin-dependent signaling by intermolecular ligation of the target receptor were isolated by sib selection. Agonists for the thrombin receptor itself (GFIYF) and for the formyl peptide receptor (MMWLL) were identified. Surprisingly, the latter agonist was quite active at the formyl peptide receptor even without N-formylation, and its formylated form, fMMWLL, was more potent than the classical formyl peptide receptor agonist fMLF. In addition to identifying novel peptide agonists for targets of pharmacological interest, this method might be used to discover agonists for orphan receptors. It also suggests a possible evolutionary path from peptide to protease-activated receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.40.23398 | DOI Listing |
Cell Commun Signal
January 2025
Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).
View Article and Find Full Text PDFObes Surg
January 2025
Surgical Outcomes and Quality Improvement Center (SOQIC), Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
Background: The efficacy of Glucagon-Like Peptide-1 Receptor Agonists (GLP1RA) for the treatment of obesity has led to considerably increased demand for these medications. GLP1RA use prior to bariatric surgery may represent a novel approach to treating obesity. The objectives of this study were to (1) describe trends in pre-bariatric GLP1RA use, (2) investigate social and clinical factors associated with their use, and (3) evaluate differences in clinical outcomes based on preoperative GLP1RA use.
View Article and Find Full Text PDFSurg Obes Relat Dis
December 2024
Discipline of Anaesthesia, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
Clin Transl Gastroenterol
January 2025
Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
Bile acid diarrhea (BAD) is a chronic and socially debilitating disease characterized by abdominal pain, diarrhea, urgency, and fecal incontinence. Recently, in a six-week randomized controlled trial (RCT), we showed that the glucagon-like peptide 1 receptor agonist (GLP-1RA) liraglutide is superior to bile acid sequestration (considered standard-of-care) using colesevelam in reducing BAD symptoms. The emergence of new, more potent, and longer-acting GLP-1RAs has spurred an interest in these treatments in BAD management.
View Article and Find Full Text PDFJ Endocrinol
January 2025
N Inagaki, Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan.
Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are widely used as antidiabetic and anti-obesity agents. Although conventional GLP-1 RAs such as liraglutide and semaglutide are acylated with fatty acids to delay their degradation by dipeptidylpeptidase-4 (DPP-4), the manufacturing process is challenging. We previously developed selectively lipidated GLP-1 peptides at their only tryptophan residue (peptide A having one 8-amino-3,6-dioxaoctanoic acid (miniPEG) linker and peptide B having three miniPEG linkers).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!