One of the primary responses observed following antigen-induced cross-linking in mast cells is an increase in the phosphorylation of certain cellular proteins on tyrosine residues. Stimulation of protein-tyrosine kinase activity appears to be necessary for induction of downstream responses such as degranulation. The role of nonreceptor protein-tyrosine kinases in the signal transduction pathway initiated by Fc epsilon RI engagement in an interleukin-3-dependent mast cell line has been examined. The results presented here show that the enzymatic activity of Lyn is increased within seconds of receptor engagement. Syk activity also undergoes a rapid and transient increase, reaching a peak at approximately 30 s. Similarly, the activity of Fer, representing a third class of nontransmembrane protein-tyrosine kinase increases as well, with its activity peak reached at 1 min poststimulation. The enzymatic activities of Syk and Fer were found to correspond to anti-phosphotyrosine antibody reactivity. Phosphorylation of tyrosine residues of the beta and gamma chains of Fc epsilon RI increased concomitant with increased protein-tyrosine kinase activity. These results indicate that at least three classes of nontransmembrane protein-tyrosine kinases are involved in mast cell FceRI signaling and that the activation of these classes of enzymes is temporally regulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.40.23362 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!