Sky (also called Rse, Brt, and Tyro3) is a member of a subfamily of related receptor tyrosine kinases, including Axl/Ufo/Ark and c-Eyk/Mer. We obtained evidence that Gas6 (the product of growth arrest-specific gene 6) is a ligand of the Sky receptor tyrosine kinase. Gas6, but not protein S (an anticoagulant protein structurally similar to Gas6), specifically bound to the soluble form of Sky (Sky-Fc), composed of the extracellular domain of Sky fused to the Fc domain of human immunoglobulin G1. The native and recombinant Gas6, but not protein S, stimulated tyrosine phosphorylation of Sky ectopically expressed in Chinese hamster ovary cells. Stimulation of Sky in response to Gas6 was inhibited by Sky-Fc. The half-maximal concentration of Gas6 that stimulated Sky was about 1 nM. Thus, Gas6 as a ligand for Sky specifically binds to and stimulates Sky receptor tyrosine kinase.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.39.22681DOI Listing

Publication Analysis

Top Keywords

receptor tyrosine
16
sky receptor
12
tyrosine kinase
12
sky
9
stimulation sky
8
product growth
8
growth arrest-specific
8
arrest-specific gene
8
ligand sky
8
gas6 protein
8

Similar Publications

With the rapid development of epidermal growth factor receptor (EGFR) gene testing of lung adenocarcinoma patients has been routinely carried out, EGFR mutations are also possible for some small samples of non-smoking female lung squamous cell carcinoma patients. This increases the opportunity for targeted therapy for this group of patients. However, drug resistance in patients with lung squamous cell carcinoma during targeted therapy is an important factor affecting subsequent treatment.

View Article and Find Full Text PDF

[Savolitinib Induced Pathological Complete Response in Non-small Cell Lung Cancer with MET Amplification: A Case Report].

Zhongguo Fei Ai Za Zhi

November 2024

Department of Pulmonary Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300000, China.

Mesenchymal-epithelial transition factor (MET) gene mutation is a large class of mutations commonly seen in non-small cell lung cancer (NSCLC). MET mutation includes subtypes such as MET exon 14 skipping mutation (METex14m) and MET amplification (METamp). For advanced NSCLC with METex14m, Savolitinib has a high sensitivity as a member of tyrosine kinase inhibitors (TKIs).

View Article and Find Full Text PDF

Background: Mutations in the structural domain of the epidermal growth factor receptor (EGFR) kinase represent a critical pathogenetic factor in non-small cell lung cancer (NSCLC). Small-molecule EGFR-tyrosine kinase inhibitors (TKIs) serve as first-line therapeutic agents for the treatment of EGFR-mutated NSCLC. But the resistance mutations of EGFR restrict the clinical application of EGFR-TKIs.

View Article and Find Full Text PDF

Methamphetamine inhibits huntingtin-associated protein 1-mediated tyrosine receptor kinase B endocytosis resulting the neuroprotective dysfunction of brain-derived neurotrophic factor.

Toxicology

January 2025

School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China. Electronic address:

Methamphetamine (METH), a synthetic stimulant, has seen an escalating abuse situation globally over the past decade. Although the molecular mechanism underlying METH-induced neurotoxicity has been explored, the dysfunction of brain-derived neurotrophic factor (BDNF) neuroprotection in the context of METH neurotoxicity remains insufficiently understood. Our previous studies have found that METH induced neurotoxicity and BDNF expression in rat primary neurons, necessitating further research into this paradox.

View Article and Find Full Text PDF

Dynamics of resistance to immunotherapy and TKI in patients with advanced renal cell carcinoma.

Cancer Treat Rev

January 2025

Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy. Electronic address:

Immune-based combinations are the cornerstone of the first-line treatment of metastatic renal cell carcinoma patients, leading to outstanding outcomes. Nevertheless, primary resistance and disease progression is a critical clinical challenge. To properly address this issue, it is pivotal to understand the mechanisms of resistance to immunotherapy and tyrosine kinase inhibitors, that tumor eventually develop under treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!