Recent work has shown that loaded breathing produces alterations in diaphragmatic glutathione metabolism. Moreover, it has been suggested that alterations in glutathione levels may be related to the development of respiratory muscle fatigue and respiratory failure during loading. The purpose of this study was to determine whether it was possible to augment diaphragmatic stores of reduced glutathione (GSH) and thereby delay the development of respiratory failure during loaded breathing by administering N-acetylcysteine (NAC), a glutathione precursor. We compared the effects of massive inspiratory loading on saline- and NAC-treated groups of decerebrate unanesthetized rats with loading continuing until respiratory arrest occurred. As controls, we also studied unloaded saline- and NAC-treated animals. After arrest, diaphragms were excised, measurement was made of diaphragmatic GSH and oxidized glutathione (GSSG) concentrations, and assessment was made of in vitro diaphragmatic contractility (i.e., the force-frequency relationship and in vitro fatigability). We found that loading of saline-treated animals produced reductions in the diaphragmatic force-frequency curve, reductions in GSH, and increases in GSSG levels. NAC administration blunted loading-induced decreases in diaphragmatic GSH levels and reduced the in vitro fatigability of excised diaphragm muscle strips. NAC did not significantly alter the time to respiratory arrest, however, and also failed to alter the effect of loaded breathing on the diaphragmatic force-frequency relationship. These findings suggest that free radical-mediated GSH depletion is not the limiting factor determining the development of respiratory failure in this model of loaded breathing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jappl.1995.79.1.340 | DOI Listing |
Animals (Basel)
January 2025
School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia.
The extent of endocrine changes in response to various levels of heat stress and subsequent recovery is not well understood. Two cohorts of 12 Black Angus steers were housed in climate-controlled rooms (CCR) and subjected to three thermal periods: PreChallenge (5 d), Challenge (7 d) and Recovery (5 d). PreChallenge and Recovery provided thermoneutral conditions.
View Article and Find Full Text PDFAust Crit Care
January 2025
KU Leuven, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, B-3000, Leuven, Belgium; University Hospitals Leuven, Department of Intensive Care Medicine, Leuven, Belgium.
Background: Recent studies suggest that fast and deep inspirations against either low or high external loads may provide patients with weaning difficulties with a training stimulus during inspiratory muscle training (IMT). However, the relationship between external IMT load, reflected by changes in airway pressure swings (ΔPaw), and total inspiratory effort, measured by oesophageal pressure swings (ΔPes), remains unexplored. Additionally, the association between ΔPes, ΔPaw, and inspiratory muscle activations remains unclear.
View Article and Find Full Text PDFAm J Cardiovasc Dis
December 2024
Department of Cardiovascular Surgery, School of Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences Tehran, Iran.
Objectives: Postoperative pulmonary complications (POPC) are common after cardiac surgeries such as coronary artery bypass grafting (CABG) and are influenced by factors including anesthesia and surgical trauma. Inspiratory muscle training (IMT) with visual biofeedback may mitigate these complications. This study investigates the impact of threshold loading inspiratory muscle training (TL-IMT) combined with respiratory biofeedback on the dynamic strength of inspiratory muscles (S-index) in patients undergoing CABG surgery during their hospitalization phase.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
Background: Minimizing the duration of mechanical ventilation is one of the most important therapeutic goals during the care of preterm infants at neonatal intensive care units (NICUs). The rate of extubation failure among preterm infants is between 16% and 40% worldwide. Numerous studies have been conducted on the assessment of extubation suitability, the optimal choice of respiratory support around extubation, and the effectiveness of medical interventions.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China. Electronic address:
Background: Trimethylamine (TMA) is a colorless, volatile gas with a strong irritating odor. Prolonged exposure to a certain amount of TMA can cause symptoms such as dizziness, nausea and difficulty breathing, and may even be life-threatening. Therefore, effective detection of TMA is crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!